Specificity of Human Capital and European Unemployment

Murat Tasci Federal Reserve Bank of Cleveland

December 26, 2008

Some Facts

■ European Unemployment was lower in the 60's and 70's relative to the U.S, but has gone up since then.

<i>(C</i>						
EU	2.16	2.62	4.76	8.36	9.55	8.43
U.S.	4.78	5.38	7.04	7.27	5.71	5.11
	1960-69	1970-74	1975-79	1980-89	1990-99	2000-06

(Source: European Commission Annual Macroeconomic Database)

Some Facts

■ European Unemployment was lower in the 60's and 70's relative to the U.S, but has gone up since then.

			1975-79	1980-89		2000-06
U.S.	4.78	5.38	7.04	7.27	5.71	5.11
EU	2.16	2.62	4.76	8.36	9.55	8.43
76						

(Source: European Commission Annual Macroeconomic Database)

■ There is still significant heterogeneity among EU countries.

Question

■ General: Why did European labor markets performed the way they did relative to the U.S.?

Question

- General: Why did European labor markets performed the way they did relative to the U.S.?
- Specific: To what extent a combination of the higher pace of technological change and the specificity of human capital account for this?

Question

- General: Why did European labor markets performed the way they did relative to the U.S.?
- Specific: To what extent a combination of the higher pace of technological change and the specificity of human capital account for this?
- Why do we think these two might interact in a certain way?

Some Other Facts

■ Technological investment in information and communications technologies (ICT) has been relatively weak in E.U.

ICT Investment as a share of GDP						
	1980	1985	1990	1995	2001	
U.S.	2.5	3.4	3.3	3.7	4.2	
EU	1.2	1.9	2.2	2.1	2.6	
(Source: Timmer et al.)						

(Source: Timmer et al.)

More Facts

 ICT contribution to output growth has been stronger in the U.S. relative to European nations.

ICT Contribution to Output Growth						
	1980-85	1985-90	1990-96			
U.S.	0.28	0.34	0.42			
Germany	0.12	0.17	0.19			
Italy	0.13	0.18	0.21			
			(

(Source: Krueger and Kumar (2004))

■ Krueger and Kumar (2004) document the European bias towards vocational education:

- Krueger and Kumar (2004) document the European bias towards vocational education:
 - In 1995, about 60% enrolled in vocational education. This ratio is higher for some European countries such as Germany and Italy (77 and 72% respectively).

- Krueger and Kumar (2004) document the European bias towards vocational education:
 - In 1995, about 60% enrolled in vocational education. This ratio is higher for some European countries such as Germany and Italy (77 and 72% respectively).
 - Vocational education in the U.S. is typically in two-year community colleges: In 1994, only 10.5 % of them were working towards a vocational degree.

- Krueger and Kumar (2004) document the European bias towards vocational education:
 - In 1995, about 60% enrolled in vocational education. This ratio is higher for some European countries such as Germany and Italy (77 and 72% respectively).
 - Vocational education in the U.S. is typically in two-year community colleges: In 1994, only 10.5 % of them were working towards a vocational degree.
 - Net entry into universities (general education) is much higher in the U.S. as well as college attainment.

When the pace of technological change is slow, having a workforce with well specialized skills might be beneficial.

- When the pace of technological change is slow, having a workforce with well specialized skills might be beneficial.
- When the rate of technological change increases ('increased turbulence'- Ljungqvist and Sargent (2007)) adapting this specialized workforce to new technologies become more costly.

- When the pace of technological change is slow, having a workforce with well specialized skills might be beneficial.
- When the rate of technological change increases ('increased turbulence'- Ljungqvist and Sargent (2007)) adapting this specialized workforce to new technologies become more costly.
- Economies with a bias toward specific ('vocational') education will likely to experience reallocation problems.

- When the pace of technological change is slow, having a workforce with well specialized skills might be beneficial.
- When the rate of technological change increases ('increased turbulence'- Ljungqvist and Sargent (2007)) adapting this specialized workforce to new technologies become more costly.
- Economies with a bias toward specific ('vocational') education will likely to experience reallocation problems.
 - Unemployment might rise further than economies with a bias towards general education.

- When the pace of technological change is slow, having a workforce with well specialized skills might be beneficial.
- When the rate of technological change increases ('increased turbulence'- Ljungqvist and Sargent (2007)) adapting this specialized workforce to new technologies become more costly.
- Economies with a bias toward specific ('vocational') education will likely to experience reallocation problems.
 - Unemployment might rise further than economies with a bias towards general education.
 - Productive matches will not be able to adapt easily.

■ Lamo, Messina and Wasmer (2006) study differences in labor market outcomes between Estonia and Poland during EU enlargement.

- Lamo, Messina and Wasmer (2006) study differences in labor market outcomes between Estonia and Poland during EU enlargement.
- Share of workforce with vocational education is higher in Poland relative to Estonia, 65 and 33 percent respectively.

- Lamo, Messina and Wasmer (2006) study differences in labor market outcomes between Estonia and Poland during EU enlargement.
- Share of workforce with vocational education is higher in Poland relative to Estonia, 65 and 33 percent respectively.
- EU enlargement is interpreted as increasing turbulance.

- Lamo, Messina and Wasmer (2006) study differences in labor market outcomes between Estonia and Poland during EU enlargement.
- Share of workforce with vocational education is higher in Poland relative to Estonia, 65 and 33 percent respectively.
- EU enlargement is interpreted as increasing turbulance.
- After enlargement Poland has persistently higher unemployment rates and durations.

■ Time is discrete. Agents discount future by $\beta \in (0,1)$.

- Time is discrete. Agents discount future by $\beta \in (0,1)$.
- A unit measure of workers and a continuum of firms.

- Time is discrete. Agents discount future by $\beta \in (0,1)$.
- A unit measure of workers and a continuum of firms.
- Each productive match consists of a firm-worker pair.

- Time is discrete. Agents discount future by $\beta \in (0,1)$.
- A unit measure of workers and a continuum of firms.
- Each productive match consists of a firm-worker pair.
- Match output is a function of worker's human capital and the level of technology.

- Time is discrete. Agents discount future by $\beta \in (0,1)$.
- A unit measure of workers and a continuum of firms.
- Each productive match consists of a firm-worker pair.
- Match output is a function of worker's human capital and the level of technology.
- There are two types of workers, T different vintages of technology.

■ Among workers, λ fraction has 'general' human capital (h_g) , $1 - \lambda$ fraction has 'specific' (vocational) human capita (h_g) I.

- Among workers, λ fraction has 'general' human capital (h_g) , 1λ fraction has 'specific' (vocational) human capita (h_s) I.
 - lacktriangle Type of human capital is exogenous and $h_{
 m g} < h_{
 m s}$.

- Among workers, λ fraction has 'general' human capital (h_g) , 1λ fraction has 'specific' (vocational) human capita (h_s) I.
 - lacktriangle Type of human capital is exogenous and $h_{
 m g} < h_{
 m s}$.
- Firm-worker matches might use different vintages of technology.

- Among workers, λ fraction has 'general' human capital (h_g) , 1λ fraction has 'specific' (vocational) human capita (h_s) l.
 - lacktriangle Type of human capital is exogenous and $h_g < h_s$.
- Firm-worker matches might use different vintages of technology.
- When unemployed, type-i worker receives a fixed income b_i .

- Among workers, λ fraction has 'general' human capital (h_g) , 1λ fraction has 'specific' (vocational) human capita (h_s) l.
 - lacktriangle Type of human capital is exogenous and $h_{
 m g} < h_{
 m s}$.
- Firm-worker matches might use different vintages of technology.
- When unemployed, type-i worker receives a fixed income b_i .
- When employed, workers paid w.

- Among workers, λ fraction has 'general' human capital (h_g) , 1λ fraction has 'specific' (vocational) human capita (h_s) l.
 - lacktriangle Type of human capital is exogenous and $h_{
 m g} < h_{
 m s}$.
- Firm-worker matches might use different vintages of technology.
- When unemployed, type-i worker receives a fixed income b_i .
- When employed, workers paid w.
- Wages determined via Nash bargaining.

Firms

■ Finding a worker requires posting a vacancy, costs c > 0.

Firms

- Finding a worker requires posting a vacancy, costs c > 0.
- Firms post vacancies as long as they make nonnegative expected profits.

Firms

- Finding a worker requires posting a vacancy, costs c > 0.
- Firms post vacancies as long as they make nonnegative expected profits.
- lacktriangle Filled jobs end exogenously each period with probability δ .

Production Technology

■ Each match produces $Y_i(\tau) = A_{\tau}h_i$, where $\tau = \{0, 1, 2, ..., T\}$ and $A_0 > A_1 > ... > A_{\tau} > ... > A_{T}$.

- Each match produces $Y_i(\tau) = A_{\tau}h_i$, where $\tau = \{0, 1, 2, ..., T\}$ and $A_0 > A_1 > ... > A_{\tau} > ... > A_T$.
- The frontier technology evolves over time at a constant rate, i.e. $A'_0 = gA_0$.

- Each match produces $Y_i(\tau) = A_{\tau}h_i$, where $\tau = \{0, 1, 2, ..., T\}$ and $A_0 > A_1 > ... > A_{\tau} > ... > A_{T}$.
- The frontier technology evolves over time at a constant rate, i.e. $A_0' = gA_0$.
- Firms can upgrade their technology vintage, τ , to a better one τ' at a cost.

- Each match produces $Y_i(\tau) = A_{\tau}h_i$, where $\tau = \{0, 1, 2, ..., T\}$ and $A_0 > A_1 > ... > A_{\tau} > ... > A_T$.
- The frontier technology evolves over time at a constant rate, i.e. $A_0' = gA_0$.
- Firms can upgrade their technology vintage, τ , to a better one τ' at a cost.

- Each match produces $Y_i(\tau) = A_{\tau}h_i$, where $\tau = \{0, 1, 2, ..., T\}$ and $A_0 > A_1 > ... > A_{\tau} > ... > A_{T}$.
- The frontier technology evolves over time at a constant rate, i.e. $A_0' = gA_0$.
- Firms can upgrade their technology vintage, τ , to a better one τ' at a cost.
 - $C_i(A_{\tau}, A_{\tau'}) = \begin{cases} \frac{A_{\tau}}{2} \left(\gamma_i \frac{A_{\tau'}}{A_{\tau}} 1 \right)^2 & \text{if } \tau > \tau' \\ 0 & \text{o/w} \end{cases}$ where $\gamma_{\sigma} < \gamma_{\varsigma}$.
 - Cost of upgrading is higher for firms with type-s workers.

■ Saerch-matching frictions captured by an aggregate matching function, M(U, V).

- Saerch-matching frictions captured by an aggregate matching function, M(U, V).
- \blacksquare *M* is CRS, strictly concave and increasing in both arguments.

- Saerch-matching frictions captured by an aggregate matching function, M(U, V).
- M is CRS, strictly concave and increasing in both arguments.
- The job finding probability of an unemployed worker is $f(\theta)$, where $f(\theta) = \frac{M(U,V)}{U}$.

- Saerch-matching frictions captured by an aggregate matching function, M(U, V).
- *M* is CRS, strictly concave and increasing in both arguments.
- The job finding probability of an unemployed worker is $f(\theta)$, where $f(\theta) = \frac{M(U,V)}{U}$.
- A vacant job finds an unemployed worker with probability $h(\theta)$, where $h(\theta) = \frac{M(U,V)}{U}$.

- Saerch-matching frictions captured by an aggregate matching function, M(U, V).
- *M* is CRS, strictly concave and increasing in both arguments.
- The job finding probability of an unemployed worker is $f(\theta)$, where $f(\theta) = \frac{M(U,V)}{U}$.
- **A** vacant job finds an unemployed worker with probability $h(\theta)$, where $h(\theta) = \frac{M(U,V)}{U}$.
- In a stationary equilibrium, among those unemployed, a fraction ϕ of them are type-g, i.e. $\phi = \frac{U_g}{U_g + U_s}$.

- Saerch-matching frictions captured by an aggregate matching function, M(U, V).
- *M* is CRS, strictly concave and increasing in both arguments.
- The job finding probability of an unemployed worker is $f(\theta)$, where $f(\theta) = \frac{M(U,V)}{U}$.
- **A** vacant job finds an unemployed worker with probability $h(\theta)$, where $h(\theta) = \frac{M(U,V)}{U}$.
- In a stationary equilibrium, among those unemployed, a fraction ϕ of them are type-g, i.e. $\phi = \frac{U_g}{U_g + U_s}$.
- All new meetings draw a random vintage available from a distribution $G(\tau)$.

■ A match with vintage τ and human capital i will decide to keep the match or leave given the new frontier.

- A match with vintage τ and human capital i will decide to keep the match or leave given the new frontier.
- Firm decides to upgrade, keep the match at τ , or separate.

- A match with vintage τ and human capital i will decide to keep the match or leave given the new frontier.
- lacksquare Firm decides to upgrade, keep the match at au, or separate.
- Surviving matches produce, agents consume.

- A match with vintage τ and human capital i will decide to keep the match or leave given the new frontier.
- **\blacksquare** Firm decides to upgrade, keep the match at au, or separate.
- Surviving matches produce, agents consume.
- Unmatched firms decide how many vacancies to post.

- A match with vintage τ and human capital i will decide to keep the match or leave given the new frontier.
- lacksquare Firm decides to upgrade, keep the match at au, or separate.
- Surviving matches produce, agents consume.
- Unmatched firms decide how many vacancies to post.
- Unemployed and vacant firms come together via M(U, V).

- A match with vintage τ and human capital i will decide to keep the match or leave given the new frontier.
- lacksquare Firm decides to upgrade, keep the match at au, or separate.
- Surviving matches produce, agents consume.
- Unmatched firms decide how many vacancies to post.
- Unemployed and vacant firms come together via M(U, V).
- Matches that produced this period are subject to exogenous destruction with prob δ .

Workers

■ Value of being unemployed for type-i worker, V_i^w satisfies

$$V_i^w = b_i + \beta \left\{ (1 - f(\theta)) V_i^w + f(\theta) \int_1^T J_i^w(\tau') dG(\tau') \right\}$$

Workers

■ Value of being unemployed for type-i worker, V_i^w satisfies

$$V_i^w = b_i + eta \left\{ (1 - f(heta))V_i^w + f(heta) \int_1^T J_i^w(au') dG(au')
ight\}$$

■ Value of being employed for type-i worker in a match with τ vintage, $J_i^w(\tau)$ is defined as

$$J_i^w(au) = \max \left\{ V_i^w, \sum_{ au'} \chi(au, au') \left[\begin{array}{c} w_i(au') + \\ \beta \left\{ \delta V_i^w + (1-\delta) J_i^w(au'+1)
ight\} \end{array}
ight]
ight\}$$

where $J_i^w(T+1) = V_i^w$ and $\chi(\tau, \tau')$ is an indicator function that gives technological upgrading decision of the firm.

Firms

 \blacksquare Value of posting a vacancy, V^f satisfies

$$V^{f} = -c + \beta \left\{ (1 - h(\theta))V^{f} + h(\theta) \left[\begin{array}{c} \phi \int_{1}^{T} J_{g}^{f}(\tau') dG(\tau') \\ + (1 - \phi) \int_{1}^{T} J_{s}^{f}(\tau') dG(\tau') \end{array} \right. \right.$$

Firms

 \blacksquare Value of posting a vacancy, V^f satisfies

$$V^{f} = -c + \beta \left\{ (1 - h(\theta))V^{f} + h(\theta) \left[\begin{array}{c} \phi \int_{1}^{T} J_{g}^{f}(\tau') dG(\tau') \\ + (1 - \phi) \int_{1}^{T} J_{s}^{f}(\tau') dG(\tau') \end{array} \right. \right.$$

■ Value of a filled job with worker, $J_i^w(\tau)$ is defined as

$$J_{i}^{f}(\tau) = \max \left\{ V^{f}, \max_{\tau'} \left\{ \begin{array}{c} y_{i}(\tau') - w_{i}(\tau') - c(\tau, \tau') \\ +\beta \left\{ \delta V^{f} + (1 - \delta) J_{i}^{f}(\tau' + 1) \right\} \end{array} \right\} \right\}$$

where
$$J_i^f(T+1) = V^f$$
.

Wage Determination

■ Each match has a surplus $S_i(\tau)$, defined as $S_i(\tau) = J_i^w(\tau) - V_i^w + J_i^f(\tau) - V^f$.

Wage Determination

- Each match has a surplus $S_i(\tau)$, defined as $S_i(\tau) = J_i^w(\tau) V_i^w + J_i^f(\tau) V^f$.
- Wages are given by a surplus sharing rule, such that .

$$J_i^w(\tau) - V_i^w = \mu S_i(\tau) \tag{1}$$

where worker's share of the surplus is μ .

Wage Determination

- Each match has a surplus $S_i(\tau)$, defined as $S_i(\tau) = J_i^w(\tau) V_i^w + J_i^f(\tau) V^f$.
- Wages are given by a surplus sharing rule, such that .

$$J_i^w(\tau) - V_i^w = \mu S_i(\tau) \tag{1}$$

where worker's share of the surplus is μ .

Remaining share of the surplus goes to the firm

$$J_i^f(\tau) - V^f = (1 - \mu)S_i(\tau) \tag{2}$$

Employment distribution across different vintages and type of workers evolve endogenously over time due to several reasons:

- Employment distribution across different vintages and type of workers evolve endogenously over time due to several reasons:
 - Some matches upgrade and change vintage.

- Employment distribution across different vintages and type of workers evolve endogenously over time due to several reasons:
 - Some matches upgrade and change vintage.
 - Some matches are kept productive at the current vintage.

- Employment distribution across different vintages and type of workers evolve endogenously over time due to several reasons:
 - Some matches upgrade and change vintage.
 - Some matches are kept productive at the current vintage.
 - Some matches become either obsolete or too costly to maintain.

- Employment distribution across different vintages and type of workers evolve endogenously over time due to several reasons:
 - Some matches upgrade and change vintage.
 - Some matches are kept productive at the current vintage.
 - Some matches become either obsolete or too costly to maintain.
 - New matches are formed.

■ Equilibrium is a list $(J_i^w(\tau), V_i^w, J_i^f(\tau), V^f, \theta, \bar{\tau}, \chi(\tau, \tau'), w(\tau), \phi, u_g, u_s)$ such that:

- Equilibrium is a list $(J_i^w(\tau), V_i^w, J_i^f(\tau), V^f, \theta, \bar{\tau}, \chi(\tau, \tau'), w(\tau), \phi, u_g, u_s)$ such that:
- 1 Value functions satisfy Bellman equations.

- Equilibrium is a list $(J_i^w(\tau), V_i^w, J_i^f(\tau), V^f, \theta, \bar{\tau}, \chi(\tau, \tau'), w(\tau), \phi, u_g, u_s)$ such that:
- Value functions satisfy Bellman equations.
- **2** Wages are determined as in (1) and (2).

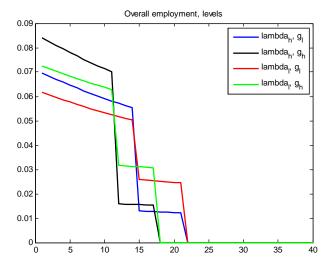
- Equilibrium is a list $(J_i^w(\tau), V_i^w, J_i^f(\tau), V^f, \theta, \bar{\tau}, \chi(\tau, \tau'), w(\tau), \phi, u_g, u_s)$ such that:
- Value functions satisfy Bellman equations.
- **2** Wages are determined as in (1) and (2).
- θ derives the value of posting a vacancy to zero.

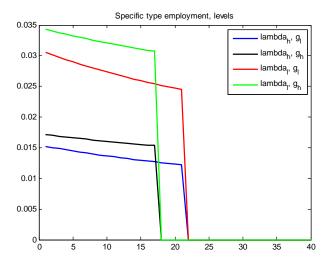
- Equilibrium is a list $(J_i^w(\tau), V_i^w, J_i^f(\tau), V^f, \theta, \bar{\tau}, \chi(\tau, \tau'), w(\tau), \phi, u_g, u_s)$ such that:
- Value functions satisfy Bellman equations.
- **2** Wages are determined as in (1) and (2).
- $oldsymbol{3}$ heta derives the value of posting a vacancy to zero.
- 4 ϕ satisfies the condition, $\phi = \frac{U_g}{U_g + U_s}$.

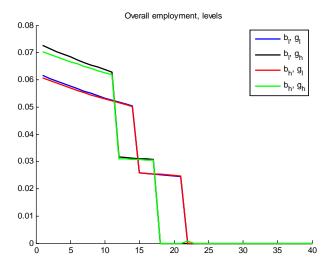
- Equilibrium is a list $(J_i^w(\tau), V_i^w, J_i^f(\tau), V^f, \theta, \bar{\tau}, \chi(\tau, \tau'), w(\tau), \phi, u_g, u_s)$ such that:
- Value functions satisfy Bellman equations.
- **2** Wages are determined as in (1) and (2).
- $oldsymbol{3}$ heta derives the value of posting a vacancy to zero.
- 4 ϕ satisfies the condition, $\phi=rac{U_{
 m g}}{U_{
 m g}+U_{
 m s}}.$
- 5 Cutoff decision, $\bar{\tau}$, and upgrading decisions, $\chi(\tau,\tau')$ are optimal.

A Benchmark Calibration (?)

Table: Benchmark Calibration							
Parameter	Value						
β	0.99						
μ	0.3						
δ	0.03						
(h_g,h_s)	(1.2, 1.32)						
С	0.29						
Ь	$b_h = 0.84, \ b_I = 0.87$						
λ	$\lambda_h = 0.7$, $\lambda_I = 0.4$						
g	$g_h = 1.015, g_l = 1.01$						


Equ	Equilibrium for different λ and g 's.										
	λ_h λ_l										
	θ	и	Us	u_dur	θ	и	Us	u_dur			
gı	1.53	0.044	0.049	2.62	1.58	0.045	0.048	3.09			
gh	1.04	0.061	0.083	4.12	1.04	0.070	0.083	5.05			


Equilibrium for different b and g 's.											
	b_h b_l										
	θ	и	Us	u_dur	θ	и	Us	u_dur			
gı	1.28	0.051	0.057	3.575	1.58	0.045	0.048	3.09			
gh	0.75	0.090	0.106	6.407	1.04	0.070	0.083	5.05			


Equ	Equilibrium for different b, λ and g 's.											
λ_h, b_l λ_l, b_h												
	θ	и	Us	u_dur	θ	и	Us	u_dur				
gı	1.53	0.044	0.049	2.62	1.28	0.051	0.057	3.575				
gh	1.04	0.061	0.083	4.12	0.75	0.090	0.106	6.407				

Tentative Conclusion

The specificity of human capital might prevent reallocation during 'turbulent' times and account for the change in EU unemployment over time relative to the U.S.

Tentative Conclusion

- The specificity of human capital might prevent reallocation during 'turbulent' times and account for the change in EU unemployment over time relative to the U.S.
- In economies with general education bias, on average more recent vintages of technology are used in production. They adapt more easily when the pace of tech. change increases.

Tentative Conclusion

- The specificity of human capital might prevent reallocation during 'turbulent' times and account for the change in EU unemployment over time relative to the U.S.
- In economies with general education bias, on average more recent vintages of technology are used in production. They adapt more easily when the pace of tech. change increases.
- Still more to do....

Table A1. Education indicators.

Country	% Upper Sec. in General	% Upper Sec. in Vocational	University Net Entry Rate	Non-university Tertiary Attainment	University Tertiary Attainment	Non-university Tertiary Return	University Tertiary Return
Austria	23	77	26	2	6		
Finland	48	52		9	12	11	15
France	47	53	33	8	11	18	14
Germany	23	77	27	10	13	17	11
Italy	28	72			8		10
Netherlands	30	70	34		22		11
Sweden	44	53		14	14	7	8
EU	42.4	57.6					
United States			52	8	25	9	13

Notes: Variable description and data sources (all measures are for 1995):

All data from Education at a Glance: OECD Indicators 1997, from specified tables.

% of students enrolled in upper secondary education in general and vocational streams: Table C3.2. University net entry rate: Table C4.1.

Non-university tertiary (vocational) and tertiary attainment (% adult population): Table A2.1.

Non-university tertiary (vocational) and tertiary rates if return: Table E5.1.

Table A2. Education expenditures.

Country	Exp./GDP (Prim. + Sec.)	Exp./GDP (Vocational Tertiary)	(Univ.		Exp. Per Student % of Per Cap. GDP (Vocational Tertiary)	Exp. Per Student (Univ. Tertiary)	Exp. Per Student % of Per Cap. GDP (Univ. Tertiary)
Austria	4.2	0.3	1.2	7,245	31	11,279	48
Finland	3.7	0.2	1.5	5,776	27	7,582	35
France	4.4	0.3	0.9	7,636	36	7,113	34
Germany	3.7	0.4	1	10,924	48	10,139	44
Italy	3.5	0.1	0.8	6,283	36	6,295	28
Netherlands	3.1		1.2	7,592	31	10,796	44
Sweden	4.5		1.7				
United States	3.7		2.3			19,802	61

Notes: Variable description and data sources (all measures are for 1998):

All data from Education at a Glance: OECD Indicators 2001, from specified tables.

Education expenditure as a % of GDP (all levels): Table B2.1c.

Expenditure per student (in PPP \$): Table B1.1.

Expenditure per student as a % of per capita GDP: Table B1.2.

For Austria and Germany, non-university tertiary expenditure per pupil are presented under vocational tertiary; for other countries, expenditure per pupil in tertiary B is presented.