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Abstract

This paper constructs coincident economic indicators (CEI) of real activity
that takes into account the data characteristics for emerging economies. The
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available at mixed frequencies and different sample periods. The approach is
to estimate the density of the indicator, rather than only point prediction,
using Bayesian semiparametric estimation. The framework that is used allows
for such emerging economy characteristics as changing volatilities and extreme
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1 Introduction

The comovement in the behavior of a large number of economic series was noted by

Burns and Mitchell (1946) in their quest to define a “business cycle”. The notion

of a coincident indicator to capture such comovement in macroeconomic time series

follows from this approach. Coincident and leading indicators provide timely infor-

mation about the underlying state of the economy and help to forecast it. Following

the suggestion in Sargent and Sims (1977) and others, the dynamic latent factor

model has been used to derive coincident and leading indicators in terms of a sin-

gle common factor summarizing the behavior of a large number of macroeconomic

series.

A number of papers have derived coincident economic indicators (CEI) for the

US economy using data available at different frequencies. Stock and Watson (1989)

construct a monthly coincident indicator of real activity using monthly data on series

included in the Department of Commerce’s coincident index, namely, industrial pro-

duction, real personal income less transfer payments, real manufacturing and trade

sales, and employee hours in nonagricultural establishments. Likewise, Diebold and

Rudebusch (1996), Chauvet (1998), Kim and Nelson (1998) have developed monthly

coincident indicators using a monthly data set. Mariano and Murasawa (2003),

Aruoba et al. (2009) develop (weekly) monthly coincident indicators using a mixed

frequency dataset. Banbura et al. (2013) and other papers implement nowcasting

using a mixed frequency data set.1 Some recent papers have also developed financial

conditions indices (FCI) to examine the role of financial factors in determining fu-

ture real activity. Hatzius et al. (2010) provide an extensive review and comparison

of the alternative indices that are available, and note the instability of FCI’s across

1These papers typically extract a common factor describing the comovement in a set of series
using the dynamic factor model, and employ alternative probability models to generate the turning
points in the underlying measure of real economic activity. Of these papers, Diebold and Rudebusch
(1996), Chauvet (1998), and Kim and Nelson (1998) modify the dynamic factor model to allow for
a regime-switching factor based on the Markov switching model proposed by Hamilton (1989).
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different sample periods.2

In this paper, we construct a measure of economic activity, i.e. a coincident

economic indicator, using econometric techniques designed to take emerging mar-

ket characteristics into account. Specifically, the “dynamic factor model” utilizes

the assumption that the variation in a large data set constructed by N coincident

variables can be summarized using a single common factor, which will serve as a

coincident economic indicator (CEI) in our case. The proposed model for construct-

ing the coincident economic indicator can be cast into the state-space framework.

The state space representation involves measurement equations linking the coinci-

dent variables to a latent factor, and transition equations describing the dynamics

of the unobserved factor. The latent factor is assumed to represent the unobserved

state of the economy, and to provide information on its evolution. The methods

in question are used to estimate a monthly coincident indicator for a key emerging

market economy, namely, Turkey.

One of the main obstacles for deriving a coincident indicator for emerging economies

has to do with data availability. Put differently, the information set is limited to

only a few variables. The series used to construct the coincident economic indicator

in our application are similar to those included in the coincident economic indicator

developed by the Department of Commerce for the U.S. economy. Real GDP and

the Industrial Production Index (IPI) measured at the quarterly and monthly fre-

quencies, respectively, are included as the key indicators on which most estimates

of cyclical activity are based. Total nonagricultural employment provide a measure

of labor market conditions while real consumption expenditures, a trade and ser-

vices turnover index, and a retail sales volumes index help to capture demand-side

influences. However, such series for emerging economies are available only at low fre-

2They construct an FCI that includes a large array of quantitative and survey-based measures,
in addition to standard financial variables such as interest rates and asset prices, and show that it
is more tightly related to future economic conditions than other available FCI’s.
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quencies, they are subject to many revisions, or they span only a short time period.3.

Therefore, one needs techniques sophisticated enough to handle mixed frequencies

and missing observations in a statistically consistent way. As Aruoba et al. (2009)

note, the state-space framework allows a convenient way to incorporate relevant data

from all frequencies and with different time spans. In our case, the series that are

available represent a patchwork rather than combination of mixed frequencies, which

tends to be a characteristic of typical emerging market data.

Another key aspect of our analysis is that we implement a Bayesian semipara-

metric approach to estimate the entire density of the indicator, rather than only

engaging in point prediction. The framework that is used allows for such emerging

economy characteristics as changing volatilities and extreme observations. Bayesian

methods to estimate dynamic factor models with regime switching factors dates to

Kim and Nelson (1998). The data are available as original observations, and sea-

sonality is taken into account in a factor framework. Koop et al. (2013) derive an

FCI that is useful for predicting future GDP growth and unemployment based on a

framework that allows for time-varying parameters and stochastic volatility. They

implement a dynamic version of model averaging by developing a procedure that

weights alternative FCI’s at different points in time, where the different FCI’s are

differentiated by the financial variables that are included in them. We allow for time

variation in the mean and the variance of the indicator in a discrete manner using

Bayesian semiparametrics. Moreover, in our data sets, we have many variables with

the same content but with different releases and/or different frequencies over differ-

ent time periods. In those cases, we allow the factor loadings to change discretely

to capture such changes in the data structure.

Despite the large number of applications of this approach in the context of the

3Specifically, for Turkey, data on real GDP are available quarterly from 1987 but the coverage
and base year have been changed since 1998. Another case in point refers to nonagricultural
employment, which was initially available at the biannual frequency but the frequency was later
changed to the quarterly frequency and finally, to the monthly frequency starting from 2005.
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US or the countries of the euro area4, there are relatively few applications for emerg-

ing market economies. Atabek et al. (2005) construct a composite leading indicator

for the Turkish economy using seven demand, supply and policy indicators over the

period 1987-2005. Akkoyun and Gunay (2012) create backcasts and nowcasts of

Turkish GDP growth by taking into account mixed frequencies (such as quarterly

and monthly series), ragged ends (some indicators are published before others, and

missing data (data not available for some variables at the beginning of the sample).

They use data on the industrial production, imports and exports as well as survey

data available in the Purchasing Managers’ Index. In a paper that is most closely

related to our analysis, Aruoba and Sarikaya (2013) develop a monthly indicator of

real economic activity using multiple indicators such as real GDP, industrial produc-

tion, imports of intermediate goods, electricity production and employment data at

mixed frequencies. They employ a dynamic factor model formulated and estimated

at the monthly frequency to extract the common factor as the economic indicator.

Our model differs from these approaches in various ways. First, we conduct a

Bayesian inference by allowing for the parameter and state uncertainty simultane-

ously. This is crucial in the current setting where data are of mixed frequency and

therefore, subject to missing observations. Second, we model seasonality explicitly

rather than employing ad-hoc mechanical procedures for removing it prior to the

analysis. By doing so, we capture the common information in the data for mod-

eling seasonality. Third, we use Bayesian semiparametric techniques that allow for

changing data patterns due to extreme observations and structural changes in the

economy when modeling the economic activity indicator. Finally, we use a much

broader data set involving many conventional variables that start at the end of the

1980’s but also include other more recently released variables.

The remainder of this paper is as follows. Section 2 presents the model. Section

4See Banbura et al. (2013) for a discussion of the different applications.
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3 describes the estimation approach while Section 4 presents the empirical results.

Concluding remarks are in Section 5.

2 The Model

Consider the dynamic factor model that formulates the joint behaviour of a set of

stock and flow variables that will be used to extract coincident index, X i,S
t and

X t
i,F , respectively. In the absence of a prior seasonal adjustment, the data are

assumed to be comprised of two components, namely, a unique factor that captures

the comovement in the different series (which is the coincident index), Ct, and two

unique factors to capture seasonal components at the monthly and the quarterly

frequencies, S1,t and S2,t, respectively.

The monthly coincident factor is assumed to evolve with AR(p) dynamics as

Φ(L)Ct = ηC,t, (1)

where Φ(L) is the lag operator (I − L− . . . Lp). For the distribution of ηC,t, we do

not specify a parametric distribution but we estimate this distribution along with

other parameters using the infinite Markov mixture model (iMMM). Specifically,

consider the finite Markov mixture model (fMMM) which, in the limiting case, be-

comes iMMM. A fMMM consists of latent states where, conditional on these states,

the observations are assume dto follow a Normal distribution. Each state variable

can take a finite number of states where the number of the states are determined

prior to analysis, st = 1, . . . , K. Taking time dependence into account, the transi-

tions between states follow a Markov process of first order, πij = Pr(st = j|st−1 = i).

Conditional on the type of state in period t, error terms follow a Normal distribu-

tion with parameters θSt . In our case, θSt consists of the mean and the variance
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parameter, µt and σ2
ηC ,t, of the error term.5.

In a typical analysis, the transition probabilities from state i follow Dirichlet

distribution and therefore, for the prior specification we also use a Dirichlet distri-

bution of symmetric form with parameter γ/K assigning equal probability for each

of transition. We complete the prior specification by assigning the distribution H for

the prior distribution of θ. To obtain an iMMM, let K → ∞ to obtain a Dirichlet

process prior. One of the obstacles of this approach in the Markov mixture models

content is that we assign a different Dirichlet process prior for transition from each

state. Therefore, there is no coupling across transitions out of different states since

the transition probabilities are given independent priors. To introduce coupling, we

can define a modified version of fMMM and then let K → ∞, as

πi ∼ Dirichlet(αβ)

β ∼ Dirichlet(γ/K)
(2)

where πi denotes transition probabilities out of state i. In this specification dis-

tribution of all transition probabilities share a common parameter, β, which itself

follows a Dirichlet distribution. As K → ∞ this hierarchical prior approaches to

hierarchical Dirichlet process. This prior together with a standard likelihood yields

the iMMM. The advantages of iMMM is threefold. First, the parameter values at

t can take any values unlike fMMM; second, iMMM spans all the continuous dis-

tributions with probability 1 indicating that it is truly a density estimation; and

third, changes in the parameters behave in a discrete manner suitable for the low

frequency macro-finance data.

For a more technical exposition of the iMMM, let G0 be a probability distribution

function over some parameter space Θ such that θ ∈ Θ and let α be a positive

scalar. A distribution G is distributed with a Dirichlet process DP (α,G0) with

5The intercept in equation (1) is suppressed as the mean of the error term

6



base measure G0 and precision parameter α if for any measurable J partition of

the parameter space, θ1:J = (θ1, θ2, . . . , θJ), the distribution G = G(θ1:J) follows a

Dirichlet distribution Dir (αG0(θ1), αG0(θ2), . . . , αG0(θJ)). Specifically

f(θt|θ−t)|G = G =
α

α + T − 1
G0(Λ) +

T∑
i=1,i̸=t

δj(θi)

α + T − 1
. (3)

Dirichlet processes span the entire distribution of the discrete probability functions

with probability one. This can be seen from the stick breaking representation of

the DP, see Sethuraman (1994), with the following scheme. Suppose a part of Wj%

of a stick with a unit initial length is being constantly broken j times where Wj ∼

Beta(1, α). As j → ∞ the unit length of the stick can be written as 1 =
∑∞

j=1 πj.

Since any partition can be the result of this stick breaking process, Dirichlet process

spans the entire distribution of the discrete probability functions with probability

one. This stick-breaking construction is denoted by π ∼ GEM(α). When hierarchical

DPs are considered the base measure itself follows DP (γ,H) with H global base

measure. In this case, it turns out that using the stick-breaking construction the

base measures can be expressed as G0 =
∑∞

j′=1 βj′δθj′ and Gi =
∑∞

j′=1 πij′δθ′j with

β ∼ GEM(γ), πk = DP (α, β).

We model seasonality similarly using a factor structure, where the first seasonal

factor with monthly seasonal dynamics is given by

S1,t = −
11∑
s=1

S1,t−s + ηS1,t , (4)

and the second seasonal factor with quarterly seasonal dynamics evolves as

S2,t = −S2,t−3 − S2,t−6 − S2,t−9 + κtηS2,t (5)
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where κt ∈ {0, 1}.6. The coincident variables denoted X i
t load on the (single) coin-

cident factor and the seasonal factors as

X i
t = λi

1Ct + λi
2S1,t + λi

3S2,t + εit. (6)

2.1 Temporal aggregation

Following Aruoba et al. (2009), we work with detrended series rather than the growth

rates as in Banbura et al. (2013). This enables us to capture the seasonal compo-

nents much precisely as taking the growth rates obscures the inference about seasonal

components. We distinguish between stock and flows variables in our analysis. For-

mally, suppose that we would like to construct a coincident indicator as, Ct at a

given frequency, say the monthly frequency. As the X i
t are not observed directly

but instead we observe the relevant series at a different frequency as X̃ i
t , we have to

model this.

Suppose that X i
t is the desired higher frequency (unobserved) measurement of

the observed raw data at low frequency X̃ i
t . We work with the logarithm of the

original series. The stock variables can be expressed as

X̃ i,S
t =

 λi
1Ct + λi

2S1,t + λi
3S2,t + εit if observed

NA otherwise
(7)

while the flow variables are expressed as

X̃ i,F
t =


∑Di−1

s=0 (λi
1Ct + λi

2S1,t + λi
3S2,t + εit) if observed

NA otherwise
(8)

6The monthly seasonal factor can also serve as a quarterly seasonal factor as the convolution of
the monthly seasonal factor to quarterly frequency produces a quarterly seasonal factor. However,
in our case this is not sufficient as addition of the separate quarterly factor increases the model fit.
Results are available upon request by the authors.
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where Di = 2 for quarterly variables and Di = 5 for semi-annual variables.

2.2 The final model

Using these definitions, the state space model is written in compact form as

X̃ i,S
t = λi

1Ct + λi
2S1,t + λi

3S2,t + εit

X̃ i,F
t =

∑Di−1
s=0 (λi

1Ct + λi
2S1,t + λi

3S2,t + εit) , εit ∼ N(0, σ2
i ) for i = 1, 2,

Φ(L)Ct = ηC,t ηC,t ∼ G(θt) θt|G ∼ G(α,G0) G0 ∼ DP (γ,H)

S1,t = −
∑11

s=1 S1,t−s + ηS1,t , ηS1,t ∼ N(0, σ2
S1,t

)

S2,t = −S2,t−3 − S2,t−6 − S2,t−9 + κtηS2,t , ηS2,t ∼ N(0, σ2
S2,t

).

(9)

Thus, Ct is the common factor to capture the coincident indicator, and S1,t and S2,t

are the seasonal factors to capture the seasonality embodied in the monthly and

quarterly series, respectively.

2.3 Data

To construct the data set, we use four sets of variables along the lines of many appli-

cations using US data. These include series on industrial production, employment,

trade and sales, and income; see Stock and Watson (1989) or (Kim and Nelson,

1998). Mariano and Murasawa (2003) add Gross Domestic Product to this data set,

as it is the common measure of economic activity at the lower frequency. Addition-

ally, since Turkey can be considered as a small open economy, unlike the US, we also

add variables related to the trade balance. Accordingly, we construct our data set to

capture the covariation in these sets of variables as much as possible. The variables

included in our study are Gross Domestic Product at constant prices (rGDP), the

industrial production index (IPI), total employment less agricultural employment

(ENP), the trade and services turnover index (TST), the retail sales volume index
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(RSV), final consumption at constant prices (rFC), the total export quantity index

(XQ) and the total import quantity index (MQ).

While these series are subject to different data revisions and base prices (for real

variables) in different periods, only IP, XQ and MQ are observed in the entire sample

period at the monthly frequency, which starts as early as the January 1986. Despite

the fact that earlier observations are likely to be subject to structural changes or

breaks, more precise estimates of the CEI and the seasonal factors are likely to be

obtained using more information. Hence, it is crucial to use more observations in

our application, as we employ unobserved components models with many missing

data points. Therefore, we opt to model the breaks and changes in the different

series and to use all available information. The detailed information about the data

set is provided in Appendix A.

3 Estimation

We use a Bayesian approach for estimation and inference in the dynamic factor model

with mixed frequency observations using Markov Chain Monte Carlo (MCMC) tech-

niques. Specifically, we use Gibbs sampling together with data augmentation (see

Geman and Geman, 1984; Tanner and Wong, 1987) to obtain posterior results. For

estimating the density of the coincident factor, we use the slice sampler of Neal

(2003), see also Van Gael et al. (2008) and Kalli et al. (2011). In Section 3.2 we

discuss the specifications of the prior distributions. Finally, in Section 3.3 we outline

the Gibbs sampling algorithm for simulating from the posterior distribution.
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3.1 The econometric model

The state space model in a compact form is as follows

Xt = µ+HSt + εt εt ∼ N(0, R)

St = FSt−1 + ηt ηt,∼ N(0, Q),
(10)

where Xt includes X
i
t for i = 1, · · · , 6, µ is a vector constants and the state vector

St includes current and lagged values of the coincident index Ct and the seasonal

factors S1,t and S2,t. The error vector is composed by the error terms in the stock

and flow representations for the different economic indicators included in our study.

3.2 Prior distributions

We start to the specifications of the prior distributions with the specifications related

to the iMMM. This includes the specification of the base prior and the specification

of the hyperpriors for the precision parameters α and γ. For the base prior H I use

a normal-inverse Gamma distribution as follows

H(µ0, a, ν, S) = N−IG(µ0, a, ν, S) 7→ µ|σ2
H ∼ N(µ0,

σ2
H

a
) and σ2

H ∼ IG(ν, S), (11)

where E(µ) = µ0 and E(σ−2
H ) = νS−1. Moreover, S can be decomposed further

into S = νv. For the precision parameters of the DPs, α and γ, we use Gamma

distributions α ∼ Gamma(aα, bα) and γ ∼ Gamma(aγ, bγ).

The remaining model parameters do not involve a DP prior. For the prior distri-

bution of the autoregressive parameters in (1), we specify the standard multivariate

normal distribution as

f(vec(F )) = N(0p, Ip), (12)

where vec(F ) is the vec operator stacking each columns of F into a single column
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vector. 09 is a vector of zeros of dimension p. Unreported results of prior sensitivity

analysis suggests that the likelihood information dominates prior information for F

and thus, the prior specification is of limited importance for this parameter.

For the factor loadings λi,k for i = 1, . . . , N and k = 1, 2, 3 we use Normal

distributions, N(1, 10). The large value of the variance reflects our ignorance about

the parameter value, while the mean is centered around one.

For the variance of the measurement errors, we use uninformative Jeffrey’s priors

as f(σ2
i ) ∝ 1

σ2
i
.

Finally, as factors and their loadings are both unobserved, we need to set iden-

tification restrictions to uniquely identify the factors. Therefore, the variances of

the state errors are restricted to be one except the coincident factor, see Bai and

Wang (2012) for example. We also set the loading of the coincident factor to IP as

one, and the loading of the quarterly seasonal factor to IP as zero. We also set the

loading of the monthly seasonal factor to rGDP as zero to complete the identification

restrictions.7.

3.3 Sampling scheme

The MCMC algorithm consists of the following steps:

1. Initialize the parameters by drawing θt from the base prior H. At step (m) of

the iteration

2. Sample f
(m)
t = (C

(m)
1:T , S

(m)
1,1:T , S

(m))′

2,1:T from p(ft|y1:T , θ(m)
1:T ,Φ

(m)) using Carter et al.

(1994) or another alternative.

3. Sample Φ(m) from p(Φ|C(m−1)
0:T , θ

(m−1)
1:T ).

7We also set other identification schemes such as setting unity for the unconditional variance of
the factor. The current identification scheme resulted in more intuitive results in line with stylized
facts about Turkish economy. Results are available upon request.
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4. Sample σ
2,(m)
i from p(σ2

i |y1:T , f
(m−1)
t ) using the observations that are not miss-

ing.

5. Sample λ
(m)
i = (λ

(m)
i,1 , λ

(m)
i,2 , λ

(m)
i,3 )′ from p(λi|y1:T , f (m−1)

t ) using the observations

that are not missing.

6. Sample θ
(m)
1:T from p(θt|C(m−1)

1:T , θ
(m−1)
−t ,Φ(m)) for t = 1, 2, . . . , T using slice sam-

pler of Neal (2003), see also Van Gael et al. (2008) and Kalli et al. (2011).

7. Sample α(m) and γ from p(α|θ(m)
1:T ) and p(γ|θ(m)

1:T ).

8. Repeat (2)-(6) M times.

4 Estimation Results

In this section, we present estimates of the coincident economic indicator (CEI) as

well as estimates of the seasonal factors and the time-varying intercept and variance

of the CEI.

4.1 The cyclical behavior of the CEI

Figures 1 and 2 present the estimated coincident indicator or common factor based

on GDP and IP data, respectively, together with the 95% confidence interval and the

shaded recession dates obtained from the BBQ algorithm for the Turkish economy,

see Altug and Bildirici (2012). We observe that the CEI is able to track the recessions

associated with major financial crises such as those in 1994-1995, the global financial

crisis in 2008-2009 as well as earlier recessions associated with the first Gulf War

in 1991 and Russian sovereign debt default in 1998. The CEI based on the IP

index displays very similar behavior. These recession dates also line up with the

dates reported by Aruoba and Sarikaya (2013) based on their indicator of economic

activity for Turkey.
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As Aruoba and Sarikaya (2013) note, there is considerable volatility in the behav-

ior of the CEI over the sample period, with crossings along the zero line occurring

at frequent intervals. We also observe that despite the existence of negative growth

in the CEI over several months, the only episodes for which these are significantly

different from zero (as signified by the upper band of the 95% confidence interval

going below zero) for sustained periods are for the 1994-95, 2000-2001 and 2008-2009

recessions.

4.2 Seasonal factors

Figures 3 and 4 display the behavior of the seasonal indicator at monthly and quar-

terly frequencies while Table 1 shows the factor loadings on the monthly and quar-

terly factors. The construction of these factors jointly with the CEI is a contribu-

tion of our framework, which makes use of unadjusted data in recovering jointly

the CEI and the seasonal factors. The monthly factor is more variable and there

is a tendency for this variability to increase in the 2000’s. By contrast, the quar-

terly seasonal factor shows the opposite behavior, with larger fluctuations during

the 1990’s. These results indicate that ad hoc seasonal adjustment methods may

obscure important features of the time variation in the underlying series, and hence,

lead to mis-specification bias in estimated unobservable factors intended to capture

the common movement in key aggregate series. Finnally, from Table 1, we observe

that the monthly series such as XQ and MQ load more on monthly seasonal factor

denoted by λS1 while the quarterly series such as rFC, THC load more on quarterly

seasonal factor denoted by λS2 .

4.3 Factor loadings

Figures 5-7 display the factor loadings for the non-agricultural employment and real

GDP series. The first series is constructed from data at the bi-annual, quarterly
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and monthly frequencies while the real GDP experienced a change in the base year

in 1998. We observe significant differences in the factor loadings on the common

factor for both series. For the non-agricultural employment series, we observe that

the factor loading on the common factor is not significantly different from zero using

series measured at the bi-annual frequency up to 2000:B2. After this date, the series

loads with a significantly negative coefficient on the common factor up until 2004:Q4,

and a significantly positive coefficient for the remainder of the sample period.

For the real GDP series, the factor loading on the common factor barely fluctuates

around a value of 0.20 for the entire sample period. However, the confidence band

around this value os much larger for pre-1998 period. Finally, we observe that the

data revisions in the real GDP series are associated with different factor loadings on

the quarterly seasonal component, further justifying our approach of multiple factor

loadings to account for different data releases over the sample period.8

4.4 Time-varying intercepts and volatility

The estimation algorithm allows for time variation in the intercept and the variance

of the unobserved CEI denoted by Ct. Figure 8 shows that are minor changes in

the intercept and increasing volatility during recessions. In particular, we observe

that the intercept falls and volatility increases during the 1994-1995, 2000-2001 and

2008-2009 crises for the Turkish economy. There is also a spike in the volatility series

during the second half of 2013, when Turkey experienced mass protests known as

the Gezi protests as well as allegations of corruption against senior political figures.

8While the real consumption expenditures series rFC also experiences a new release in 1998, we
did not report the estimated factor loadings across the different periods because they were nearly
identical and equal to the values reported in Table 1. The results are available upon request.
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5 Conclusion

The challenges of constructing a coincident indicator or real activity for emerging

economies such as Turkey stem from different sources. One of these challenges has

to do with the sizable seasonal components in the underlying series, which may

include a common component. The second challenge has to do with the data avail-

ability and the mismatch of frequencies and sample periods for the existing series. A

third challenge is associated with the changing nature of trends and volatility in the

behavior of an underlying measure of real activity, which may reflect changes in pol-

icy regimes, the role of external shocks, and structural adjustment in the domestic

economy itself.

The main findings of the paper can be summarized as follows. The coincident

indicator which is constructed from the common unobservable common factor is able

to capture the timing, duration and severity of recessions for the Turkish economy.

However, we observe significant variation in the factor loadings on the common

factor for series in which there are changes in the data structure throughout the

sample period. Such variation provides justification for our approach of accounting

for changes in the nature of the series due to data releases, a feature that is typically

absent from other similar studies. The monthly and quarterly common seasonal fac-

tors are sufficient for capturing seasonal patterns in the series while semiparametric

structure allows for sharper turning points.

In future work, we seek to extend the coincident indicator at a higher frequency

and conduct density nowcasting using semiparametric structure. We also seek to

include financial variables such as the slope of the yield curve or changes in the

supply of credit to capture the role of financial variables on future real economic

activity. Nevertheless, our approach provides a potential template for developing a

coincident economic indicator for emerging market economies in that it allows for

mixed frequencies, missing data and time-varying intercepts and volatility in the

16



underlying common factor. Such features address the problems of data availability

for such economies as well as accounting for potential regime shifts, structural breaks

and geo-political risks.
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Appendix A The data set

We use seasonally unadjusted series with different release combinations, where the

detailed information is provided in the following Table ??.

Variable name Mnemonic Frequency Release

Industrial production index IP Monthly 1986M1:2014M5

Import quantity index MQ Monthly 1986M1:2014M5

Export quantity index XQ Monthly 1986M1:2014M5

Gross Domestic Product rGDP Quarterly 1987Q1:1997Q1
1998Q1:2014Q1

Final Consumption rFC Quarterly 1987Q1:1997Q1
1998Q1:2014Q1

Total employment less ENP Biannual 1987B1:1999B2
agricultural employment quarterly 2000Q1:2004Q4

monthly 2005M1:2014M5

Trade and services turnover index TST Quarterly 2005Q3:2014Q1

Retail sales volume index RSV Monthly 2010M1:2014M5

Table A.1: Data on economic indicators: Frequency of observation and sample pe-
riods
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λS1 λS2

5% LB Median 5% UB 5% LB Median 5% UB

IP 0.74 0.88 1.02 0 0 0
rFC -0.12 -0.06 0.00 0.82 0.93 1.07
XQ 0.73 0.99 1.26 -0.58 -0.32 -0.08
MQ 0.87 1.10 1.34 -0.29 -0.08 0.13
RT 1.32 1.32 1.32 0.64 0.64 0.65
THC 0.22 0.76 1.26 0.90 1.17 1.49

Table 1: Factor loadings on the monthly and quarterly seasonal factors
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Figure 1: Coincident factor and GDP based recession dates (BBQ algorithm)
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Figure 2: Coincident factor and IP based recession dates (BBQ algorithm)
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Figure 3: Monthly factor
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Figure 4: Quarterly factor
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Figure 5: Factor loadings of non-agriculture employment series
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Figure 6: Factor loadings of GDP series
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Figure 7: Factor loadings of GDP series for quarterly seasonal factor
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Figure 8: Time-varying intercept and volatility of the coincident indicator
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