Son Preference, Fertility Decline and the Non-Missing Girls of Turkey

Onur Altindag*

*The Graduate Center, City University of New York

EAF-TUSIAD Conference on Education, Health and Worker Productivity October 16, 2015

イロト 不得下 イヨト イヨト 二日

1/25

- In the absence of manipulation:
 - The population sex ratio (number of males per female) at birth: [1.02 - 1.08] (Hesketh and Xing, 2006).

2 Within a family:
$$f(female; p) = \begin{cases} 0.49 \text{ if } female = 1 \\ 0.51 \text{ if } female = 0 \end{cases}$$

- Substantial evidence that parents skew the sex composition of their children through:
 - Gender discrimination in relative care \rightarrow "missing" women (Sen, 1990).
 - Son-biased fertility stopping rules.

- In the absence of manipulation:
 - The population sex ratio (number of males per female) at birth: [1.02 - 1.08] (Hesketh and Xing, 2006).

3 Within a family:
$$f(female; p) = \begin{cases} 0.49 \text{ if } female = 1\\ 0.51 \text{ if } female = 0 \end{cases}$$

- Substantial evidence that parents skew the sex composition of their children through:
 - Gender discrimination in relative care \rightarrow "missing" women (Sen, 1990).
 - Son-biased fertility stopping rules.

- \approx 2M girls under-5 are missing every year, 70% of them were never born due to sex-selective abortion (World Bank, 2011).
 - South Korea (Chung and Gupta, 2007).
 - China (Qian, 2008).
 - India (Jayachandran, 2014).
 - Armenia, Azerbaijan and Georgia (Guilmoto and Duthé, 2013).

- \approx 2M girls under-5 are missing every year, 70% of them were never born due to sex-selective abortion (World Bank, 2011).
 - South Korea (Chung and Gupta, 2007).
 - China (Qian, 2008).
 - India (Jayachandran, 2014).
 - Armenia, Azerbaijan and Georgia (Guilmoto and Duthé, 2013).

• Male-biased differential-stopping behavior (DSB):

Parents continue to bear children until reaching a desired number of sons.

- More common:
 - Central Asia (Filmer et al., 2009).
 - North Africa (Yount et al. 2000, Basu and de Jong, 2010).
- Co-exists with sex selective abortion:
 - China and India (Ebenstein, 2007).
 - South Korea (Hesketh and Xing, 2006).
- e.g. South Korea in 1992, sex ratios by birth parity: second-birth: 1.13, third-birth: 1.96, fourth-birth: 2.29.

• Male-biased differential-stopping behavior (DSB):

Parents continue to bear children until reaching a desired number of sons.

- More common:
 - Central Asia (Filmer et al., 2009).
 - North Africa (Yount et al. 2000, Basu and de Jong, 2010).
- Co-exists with sex selective abortion:
 - China and India (Ebenstein, 2007).
 - South Korea (Hesketh and Xing, 2006)
- e.g. South Korea in 1992, sex ratios by birth parity: second-birth: 1.13, third-birth: 1.96, fourth-birth: 2.29.

• Male-biased differential-stopping behavior (DSB):

Parents continue to bear children until reaching a desired number of sons.

- More common:
 - Central Asia (Filmer et al., 2009).
 - North Africa (Yount et al. 2000, Basu and de Jong, 2010).

イロト 不得下 イヨト イヨト 二日

4 / 25

- Co-exists with sex selective abortion:
 - China and India (Ebenstein, 2007).
 - South Korea (Hesketh and Xing, 2006).
- e.g. South Korea in 1992, sex ratios by birth parity: second-birth: 1.13, third-birth: 1.96, fourth-birth: 2.29.

- Does **not** alter the population sex ratio.
- Does affect the sibling sex composition:
 - Females have more siblings.
 - Sex ratio at last birth is skewed in favor of males.
- Might lead to differential allocation of family resources in favor of boys if families exceed their ideal family size in order to have sons.

- Does not alter the population sex ratio.
- Does affect the sibling sex composition:
 - Females have more siblings.
 - Sex ratio at last birth is skewed in favor of males.
- Might lead to differential allocation of family resources in favor of boys if families exceed their ideal family size in order to have sons.

- Does not alter the population sex ratio.
- Does affect the sibling sex composition:
 - Females have more siblings.
 - Sex ratio at last birth is skewed in favor of males.
- Might lead to differential allocation of family resources in favor of boys if families exceed their ideal family size in order to have sons.

- Does not alter the population sex ratio.
- Does affect the sibling sex composition:
 - Females have more siblings.
 - Sex ratio at last birth is skewed in favor of males.
- Might lead to differential allocation of family resources in favor of boys if families exceed their ideal family size in order to have sons.

- Parents in Turkey exhibit strong son preference in fertility:
 - Exclusively through son-biased differential stopping.
 - No evidence of sex-selective abortion.
- Demand for sons leads to skewed sibling sex ratios:
 - Girls grow up larger families than boys.
 - Girls are born earlier than their male siblings.
 - Sex-differential contraceptive use.
- Persistency over time and across households with different fertility levels.
- Important gender disparities in health:
 - Semale infant mortality is lower than male infant mortality if the proportion of males is relatively high in the household.
 - Female survival advantage disappears if the proportion of females is relatively high.

- Parents in Turkey exhibit strong son preference in fertility:
 - Exclusively through son-biased differential stopping.
 - No evidence of sex-selective abortion.
- Demand for sons leads to skewed sibling sex ratios:
 - Girls grow up larger families than boys.
 - Girls are born earlier than their male siblings.
 - Sex-differential contraceptive use.
- Persistency over time and across households with different fertility levels.
- Important gender disparities in health:
 - Female infant mortality is lower than male infant mortality if the proportion of males is relatively high in the household.
 - Female survival advantage disaappears if the proportion of females is relatively high.

- Parents in Turkey exhibit strong son preference in fertility:
 - Exclusively through son-biased differential stopping.
 - No evidence of sex-selective abortion.
- Demand for sons leads to skewed sibling sex ratios:
 - Girls grow up larger families than boys.
 - Girls are born earlier than their male siblings.
 - Sex-differential contraceptive use.
- Persistency over time and across households with different fertility levels.
- Important gender disparities in health:
 - Female infant mortality is lower than male infant mortality if the proportion of males is relatively high in the household.
 - Female survival advantage disaappears if the proportion of females is relatively high.

- Parents in Turkey exhibit strong son preference in fertility:
 - Exclusively through son-biased differential stopping.
 - No evidence of sex-selective abortion.
- Demand for sons leads to skewed sibling sex ratios:
 - Girls grow up larger families than boys.
 - Girls are born earlier than their male siblings.
 - Sex-differential contraceptive use.
- Persistency over time and across households with different fertility levels.
- Important gender disparities in health:
 - Female infant mortality is lower than male infant mortality if the proportion of males is relatively high in the household.
 - Female survival advantage disaappears if the proportion of females is relatively high.

- Simple fertility decision model:
 - Three periods (Maximum number of children = 3).
 - N couples and every couple has a target of having one son.

•
$$f(\text{female}; p) = \begin{cases} 0.5 \text{ if } \text{female} = 1\\ 0.5 \text{ if } \text{female} = 0 \end{cases}$$

• More sophisticated models have similar implications (Basu and De Jong, 2010).

- Simple fertility decision model:
 - Three periods (Maximum number of children = 3).
 - *N* couples and every couple has a target of having one son.

•
$$f(\text{female}; p) = \begin{cases} 0.5 \text{ if } \text{female} = 1\\ 0.5 \text{ if } \text{female} = 0 \end{cases}$$

• More sophisticated models have similar implications (Basu and De Jong, 2010).

	implications of a	Simple Son-Diase		topping Rule			
	Sibling Sex Composition						
Birth Parity	В	GB	GGB	GGG	Sex Ratio		
First	$\frac{N}{2}$ Boys	$\frac{N}{4}$ Girls	$rac{N}{8}$ Girls	$\frac{N}{8}$ Girls	1.00		
Second		$\frac{N}{4}$ Boys	$\frac{N}{8}$ Girls	$\frac{N}{8}$ Girls	1.00		
Third			$\frac{N}{8}$ Boys	$\frac{N}{8}$ Girls	1.00		
Family Size	1 Child	2 Children	3 Chi	ldren			
Sex Ratio	Only male	1.00	0.2	20			
SRLB	Only male	Only male	1.0	00			
# Children	Boys 7 <u>N</u>			(Girls		
			=		7 <u>N</u> 8		
			• ۵		 < ≣ > _ ≡ 		

Implications of a Simple Son-Biased Differential Stopping Rule

8 / 25

Data

Population:

- 1985, 1990 and 2000 Censuses.
- 2008-2013 annual population data: Address Based Population Registration System (ABPRS).
- 2001-2013 annual birth statistics: Central Population Administrative System (MERNIS).

Household:

- Turkish Demographic and Health Survey (TDHS): 1993, 1998, 2003, 2008 Waves.
- Nationally representative survey of 28,151 ever-married women, aged 15-49.
- Include complete fertility histories, family planning prevalence and demographic characteristics.
- ● Figure 1. Long-term Sex Ratio Trends in Turkey

● Figure 2. Sex ratios by Number of Children Alive

Data

• Population:

- 1985, 1990 and 2000 Censuses.
- 2008-2013 annual population data: Address Based Population Registration System (ABPRS).
- 2001-2013 annual birth statistics: Central Population Administrative System (MERNIS).

• Household:

- Turkish Demographic and Health Survey (TDHS): 1993, 1998, 2003, 2008 Waves.
- Nationally representative survey of 28,151 ever-married women, aged 15-49.
- Include complete fertility histories, family planning prevalence and demographic characteristics.

Figure 1. Long-term Sex Ratio Trends in Turkey
 Figure 2. Sex ratios by Number of Children Alive

Data

• Population:

- 1985, 1990 and 2000 Censuses.
- 2008-2013 annual population data: Address Based Population Registration System (ABPRS).
- 2001-2013 annual birth statistics: Central Population Administrative System (MERNIS).

• Household:

- Turkish Demographic and Health Survey (TDHS): 1993, 1998, 2003, 2008 Waves.
- Nationally representative survey of 28,151 ever-married women, aged 15-49.
- Include complete fertility histories, family planning prevalence and demographic characteristics.

● (▶ Figure 1. Long-term Sex Ratio Trends in Turkey

Figure 2. Sex ratios by Number of Children Alive

Sex Ra	tios by	Birth (Order (\	Nomen	aged 1	15 to 4 9	9)
Number			Bi	rth Ord	er		
of births	1	2	3	4	5	6	7
1	1.21						
2	1.19	1.19					
3	1.08	1.06	1.26				
4	0.92	0.89	0.93	1.20			
5	0.98	0.89	0.94	1.07	1.23		
6	0.84	0.98	0.89	0.91	1.00	1.23	
7+	0.97	0.94	0.81	0.90	0.94	0.98	0.98
Average							
birth order		Boys :	= 2.75	Girls =	= 2.78		

C \sim 1 D! .! () . . 1.4.5 A O \ . . .

- Robustness checks. Sex ratios for:
 - Second-born children conditional on a first-born daughter: 1.04.
 - Third-born children after two females: 1.02.
 - Second-, third-, and fourth-born children: 1.05, 1.02, 1.02.

• Summary of descriptive analysis:

- OSB is the only mechanism by which couples in Turkey pursue son preference.
- ② Despite fertility decline, skewed sex ratio distribution conditional on family size is persistent over time.

• **Identification:** without prenatal manipulation, the gender of the first-born child is a random drawn.

 $y_{irt} = \alpha + \tau Z_{irt} + X_i' \Gamma + \theta_r + \delta_t + \omega_{rt} + u_{irt}$

- *y_i*: Number of pregnancies, children ever born, and children alive. Indicators for current contraceptive use and having any induced abortion in the past.
- Z_i : Indicator of a female first-born child.
- X_i: Each parent's age, education, mother's ethnicity, age at first birth, rural residence, patrilocality, arranged marriage, bride price payment.
- θ_r : Region dummies.
- δ_t : Survey year dummies.
- ω_{rt} : Region specific survey year fixed-effects.

• **Identification:** without prenatal manipulation, the gender of the first-born child is a random drawn.

 $y_{irt} = \alpha + \tau Z_{irt} + X_i' \Gamma + \theta_r + \delta_t + \omega_{rt} + u_{irt}$

- *y_i*: Number of pregnancies, children ever born, and children alive. Indicators for current contraceptive use and having any induced abortion in the past.
- Z_i : Indicator of a female first-born child.
- X_i: Each parent's age, education, mother's ethnicity, age at first birth, rural residence, patrilocality, arranged marriage, bride price payment.
- θ_r : Region dummies.
- δ_t : Survey year dummies.
- ω_{rt} : Region specific survey year fixed-effects.

- Key identifying assumption: $E[Z_{irt}|u_{irt}] = 0$ Difficult to justify if:
 - First-born child's sex is a prenatal choice.
 - Excess maternal mortality might change the sample composition.
- Test on observables:

Compare family characteristics by first child's sex.

- $Z_{irt} = \gamma + X'_i \Phi + \theta_r + \delta_t + \epsilon_{irt}$ (logit)
- Data restriction: women with at least one birth history with a singleton first birth (99.1 % of the original sample).
- au is estimated by:
 - OLS: Change in *y* induced by a first-born female.
 - Maximum Likelihood assuming Poisson process when y is a count response variable.

• Key identifying assumption: $E[Z_{irt}|u_{irt}] = 0$

Difficult to justify if:

- First-born child's sex is a prenatal choice.
- Excess maternal mortality might change the sample composition.
- Test on observables:
 - Compare family characteristics by first child's sex.
 - $Z_{irt} = \gamma + X'_i \Phi + \theta_r + \delta_t + \epsilon_{irt}$ (logit)
- Data restriction: women with at least one birth history with a singleton first birth (99.1 % of the original sample).
- au is estimated by:
 - OLS: Change in *y* induced by a first-born female.
 - Maximum Likelihood assuming Poisson process when y is a count response variable.

• Key identifying assumption: $E[Z_{irt}|u_{irt}] = 0$

Difficult to justify if:

- First-born child's sex is a prenatal choice.
- Excess maternal mortality might change the sample composition.
- Test on observables:
 - Compare family characteristics by first child's sex.
 - $Z_{irt} = \gamma + X'_i \Phi + \theta_r + \delta_t + \epsilon_{irt}$ (logit)
- Data restriction: women with at least one birth history with a singleton first birth (99.1 % of the original sample).

• au is estimated by:

- OLS: Change in *y* induced by a first-born female.
- Maximum Likelihood assuming Poisson process when y is a count response variable.

• Key identifying assumption: $E[Z_{irt}|u_{irt}] = 0$

Difficult to justify if:

- First-born child's sex is a prenatal choice.
- Excess maternal mortality might change the sample composition.
- Test on observables:
 - Compare family characteristics by first child's sex.
 - $Z_{irt} = \gamma + X'_i \Phi + \theta_r + \delta_t + \epsilon_{irt}$ (logit)
- Data restriction: women with at least one birth history with a singleton first birth (99.1 % of the original sample).
- τ is estimated by:
 - OLS: Change in y induced by a first-born female.
 - Maximum Likelihood assuming Poisson process when y is a count response variable.

	First child's sex			<i>t</i> -test	
	Boy	Girl	Difference	<i>p</i> -value	N
Mother					
Age	34.07	34.13	-0.053	0.61	25366
Age at first birth	20.66	20.59	0.067	0.17	25366
Years of education	4.93	4.99	-0.062	0.19	25366
Non-Turkish	0.20	0.19	0.005	0.32	25366
Husband					
Age	38.61	38.72	-0.115	0.33	23140
Years of education	7.02	7.07	-0.047	0.33	25269
Patrilocal residence	0.12	0.12	-0.005	0.21	25366
Household					
Rural	0.30	0.30	0.003	0.61	25366
Arranged by families	0.61	0.61	0.005	0.44	25355
Paid bride price	0.23	0.24	-0.005	0.38	24956

Baseline Characteristics of Families by First Child's Sex

 $\mathit{p}\text{-value, joint } \chi^2\text{-test} = 0.53$

N=25366 pseudo-R²=0.0006

Effect of First Child's Sex on Parents' Fertility Behavior

Women aged 15 to 49								
	Number of	Contraceptive	Pregnancy					
	Pregnancies	Births	Living Children	Use	Termination			
$\hat{ au}$ OLS	0.204***	0.189***	0.184***	-0.016***	-0.001			
	(0.023)	(0.017)	(0.015)	(0.005)	(0.005)			
$\hat{\tau}^{MLE}$	0.053***	0.062***	0.067***					
	(0.006)	(0.005)	(0.005)					
$\bar{y} Z_i=0$	3.82	3.02	2.73	0.70	0.26			

Women a	aged	15	to	29
---------	------	----	----	----

	Number of Pregnancies	Number of Births	Number of Living Children	Contraceptive Use	Pregnancy Termination
$\hat{ au}^{OLS}$	0.087***	0.058***	0.061***	-0.026***	-0.001
	(0.022)	(0.016)	(0.015)	(0.010)	(0.007)
$\hat{ au}^{MLE}$	0.039***	0.031***	0.034***		
	(0.010)	(0.008)	(800.0)		
$\bar{y} Z_i=0$	2.29	1.93	1.82	0.70	0.12
					★ E < 50

16 / 25

- Relationship between fertility level and son preference is not obvious. e.g. higher education \rightarrow fertility decline.
 - Dincer et al. (2013): Compulsory schooling reform in 1997 raised the proportion of women using modern family planning methods by 8% 9%.
 - Kirdar et al. (2012): The new compulsory schooling law increased the average age at first birth substantially.
 - Higher education itself might lead to a neutral gender preference in fertility.

- Relationship between fertility level and son preference is not obvious.
 e.g. higher education → fertility decline.
 - Dincer et al. (2013): Compulsory schooling reform in 1997 raised the proportion of women using modern family planning methods by 8% -9%.
 - Kirdar et al. (2012): The new compulsory schooling law increased the average age at first birth substantially.
 - Higher education itself might lead to a neutral gender preference in fertility.

- Relationship between fertility level and son preference is not obvious.
 e.g. higher education → fertility decline.
 - Dincer et al. (2013): Compulsory schooling reform in 1997 raised the proportion of women using modern family planning methods by 8% -9%.
 - Kirdar et al. (2012): The new compulsory schooling law increased the average age at first birth substantially.
 - Higher education itself might lead to a neutral gender preference in fertility.

- Relationship between fertility level and son preference is not obvious.
 e.g. higher education → fertility decline.
 - Dincer et al. (2013): Compulsory schooling reform in 1997 raised the proportion of women using modern family planning methods by 8% -9%.
 - Kirdar et al. (2012): The new compulsory schooling law increased the average age at first birth substantially.
 - Higher education itself might lead to a neutral gender preference in fertility.

• Endogenous Stratification (Abadie et al. 2014):

- Only use sample of women with a first-born son, i.e. $Z_i = 0$, estimate $y_i = \pi_0 + W'_i \pi_1 + \epsilon_i$
 - *y_i*: Number of living children.
 - W_i : Mother's age at first birth, father's and mother's education, region, rural residence.
- 2 Predict $W'_i \hat{\pi}$ for the full sample and define the quantiles of predicted fertility:
 - $c_{k-1} < W_i'\hat{\pi} \le c_k$ for $k = \{1, 2, 3, 4, 5\}$

 $\begin{aligned} & \quad \textbf{Stimate the treatment effect for each quantile using } \hat{\tau}^{RSS} \text{ and } \hat{\tau}^{LOO} \\ & \quad \hat{\tau}_k = \frac{\sum_{i=1}^N y_i l_{[Z_i=1,c_{k-1} < W_i' \hat{\pi} \le c_k]}}{\sum_{i=1}^N l_{[Z_i=1,c_{k-1} < W_i' \hat{\pi} \le c_k]}} - \frac{\sum_{i=1}^N y_i l_{[Z_i=0,c_{k-1} < W_i' \hat{\pi} \le c_k]}}{\sum_{i=1}^N l_{[Z_i=0,c_{k-1} < W_i' \hat{\pi} \le c_k]}} \end{aligned}$

・ロ ・ ・ 日 ・ ・ 目 ・ ・ 目 ・ 日 ・ の へ (* 18 / 25

- Endogenous Stratification (Abadie et al. 2014):
 - Only use sample of women with a first-born son, i.e. $Z_i = 0$, estimate $y_i = \pi_0 + W'_i \pi_1 + \epsilon_i$
 - *y_i*: Number of living children.
 - *W_i*: Mother's age at first birth, father's and mother's education, region, rural residence.
 - Predict W_i['] for the full sample and define the quantiles of predicted fertility:

 $c_{k-1} < W'_i \hat{\pi} \le c_k$ for $k = \{1, 2, 3, 4, 5\}$

 $\hat{\sigma}_{k} = \frac{\sum_{i=1}^{N} y_{i} l_{[Z_{i}=1,c_{k-1} < W_{i}'\hat{\pi} \le c_{k}]}}{\sum_{i=1}^{N} l_{[Z_{i}=1,c_{k-1} < W_{i}'\hat{\pi} \le c_{k}]}} - \frac{\sum_{i=1}^{N} y_{i} l_{[Z_{i}=0,c_{k-1} < W_{i}'\hat{\pi} \le c_{k}]}}{\sum_{i=1}^{N} l_{[Z_{i}=1,c_{k-1} < W_{i}'\hat{\pi} \le c_{k}]}} - \frac{\sum_{i=1}^{N} y_{i} l_{[Z_{i}=0,c_{k-1} < W_{i}'\hat{\pi} \le c_{k}]}}{\sum_{i=1}^{N} l_{[Z_{i}=0,c_{k-1} < W_{i}'\hat{\pi} \le c_{k}]}}$

- Endogenous Stratification (Abadie et al. 2014):
 - Only use sample of women with a first-born son, i.e. $Z_i = 0$, estimate $y_i = \pi_0 + W'_i \pi_1 + \epsilon_i$
 - y_i: Number of living children.
 - W_i : Mother's age at first birth, father's and mother's education, region, rural residence.
 - **2** Predict $W'_i \hat{\pi}$ for the full sample and define the quantiles of predicted fertility:
 - $c_{k-1} < W_i' \hat{\pi} \le c_k$ for $k = \{1, 2, 3, 4, 5\}$

 $\hat{\mathbf{F}}_{k} = \frac{\sum_{i=1}^{N} y_{i} I_{[Z_{i}=1,c_{k-1} < W_{i}'\hat{\pi} \le c_{k}]}}{\sum_{i=1}^{N} I_{[Z_{i}=1,c_{k-1} < W_{i}'\hat{\pi} \le c_{k}]}} - \frac{\sum_{i=1}^{N} y_{i} I_{[Z_{i}=0,c_{k-1} < W_{i}'\hat{\pi} \le c_{k}]}}{\sum_{i=1}^{N} I_{[Z_{i}=0,c_{k-1} < W_{i}'\hat{\pi} \le c_{k}]}}$

- Endogenous Stratification (Abadie et al. 2014):
 - Only use sample of women with a first-born son, i.e. $Z_i = 0$, estimate $y_i = \pi_0 + W'_i \pi_1 + \epsilon_i$
 - *y_i*: Number of living children.
 - *W_i*: Mother's age at first birth, father's and mother's education, region, rural residence.
 - **2** Predict $W'_i \hat{\pi}$ for the full sample and define the quantiles of predicted fertility:

$$c_{k-1} < W_i' \hat{\pi} \le c_k$$
 for $k = \{1, 2, 3, 4, 5\}$

Solution Structure in the treatment effect for each quantile using $\hat{\tau}^{RSS}$ and $\hat{\tau}^{LOO}$ $\hat{\tau}_{k} = \frac{\sum_{i=1}^{N} y_{i} I_{[Z_{i}=1,c_{k-1} < W_{i}'\hat{\pi} \le c_{k}]}}{\sum_{i=1}^{N} I_{[Z_{i}=1,c_{k-1} < W_{i}'\hat{\pi} \le c_{k}]}} - \frac{\sum_{i=1}^{N} y_{i} I_{[Z_{i}=0,c_{k-1} < W_{i}'\hat{\pi} \le c_{k}]}}{\sum_{i=1}^{N} I_{[Z_{i}=0,c_{k-1} < W_{i}'\hat{\pi} \le c_{k}]}}$

Table 6. Endogenous Stratification Results on the Number of Living Children												
	Repeated Sp	olit Sample	Leave-O	ne-Out								
Quantile	Unadjusted	Adjusted	Unadjusted	Adjusted	$\bar{y}_k Z_i = 0$	%Δ	N _k					
$\hat{\tau}_1$	0.096*** (0.021)	0.076** (0.019)	0.095*** (0.021)	0.077*** (0.019)	1.69	0.046	5073					
$\hat{\tau}_2$	0.152*** (0.027)	0.144*** (0.022)	0.137*** (0.029)	0.128*** (0.024)	2.12	0.060	5067					
$\hat{ au}_3$	0.234*** (0.034)	0.218*** (0.026)	0.256*** (0.039)	0.229*** (0.028)	2.44	0.094	5081					
$\hat{ au}_4$	0.213*** (0.046)	0.215*** (0.031)	0.209*** (0.047)	0.219*** (0.035)	2.99	0.073	5073					
$\hat{\tau}_5$	0.283*** (0.071)	0.259*** (0.044)	0.295*** (0.071)	0.265*** (0.044)	4.41	0.060	5072					

Table 6. Endogenous Stratification Results on the Number of Living Children

◆□> ◆圖> ◆臣> ◆臣> 三臣 - のへ⊙

19 / 25

OSB shows a relatively flat response to decline in fertility.

- The relationship follows an inverse U-shaped path reaching a peak at the medium fertility level.
- Strong demand for at least one son for all fertility levels.
- Fertility decline predicted by better education, more income and urbanization does not necessarily eliminate the gender-biased fertility preference.

- **1** DSB shows a relatively flat response to decline in fertility.
- The relationship follows an inverse U-shaped path reaching a peak at the medium fertility level.
- ③ Strong demand for at least one son for all fertility levels.
- Fertility decline predicted by better education, more income and urbanization does not necessarily eliminate the gender-biased fertility preference.

- **1** DSB shows a relatively flat response to decline in fertility.
- The relationship follows an inverse U-shaped path reaching a peak at the medium fertility level.
- Strong demand for at least one son for all fertility levels.
- Fertility decline predicted by better education, more income and urbanization does not necessarily eliminate the gender-biased fertility preference.

- **1** DSB shows a relatively flat response to decline in fertility.
- One relationship follows an inverse U-shaped path reaching a peak at the medium fertility level.
- Strong demand for at least one son for all fertility levels.
- Fertility decline predicted by better education, more income and urbanization does not necessarily eliminate the gender-biased fertility preference.

• Rosenblum (2013):

- Sons provide a future differential economic gain to parents.
- Economic gain from an extra son is larger if the existing proportion of sons is relatively small in the family.
- The smaller the proportion of boys, the greater the incentive for households to favor boys in health investment.

Difference-in-differences approach:

- Child's gender is random at any birth parity.
- If the previous sibling is a girl, however, families have an incentive to differentially invest in boys.
- Gender difference in health should lead to a relative male advantage if the previous sibling is female.

• Rosenblum (2013):

- Sons provide a future differential economic gain to parents.
- Economic gain from an extra son is larger if the existing proportion of sons is relatively small in the family.
- The smaller the proportion of boys, the greater the incentive for households to favor boys in health investment.
- Difference-in-differences approach:
 - Child's gender is random at any birth parity.
 - If the previous sibling is a girl, however, families have an incentive to differentially invest in boys.
 - Gender difference in health should lead to a relative male advantage if the previous sibling is female.

• Difference-in-differences estimator:

 $y_i = \mu_0 + \mu_1 Z_{i1} + \mu_2 Z_{i2} + \mu_3 (Z_{i1} \times Z_{i2}) + \eta_i$

- y_i: Infant mortality, stunting, and being underweight (as defined by WHO).
- Z_{i1} : Female indicator for child *i*.
- Z_{i2} : Female indicator if the older sibling is female.
- e.g., mortality differences among second-borns:

•
$$\mu_1 = E[Y|Z_{i1} = 1, Z_{i2} = 0] - E[Y|Z_{i1} = 0, Z_{i2} = 0]$$

- $\mu_1 + \mu_3 = E[Y|Z_{i1} = 1, Z_{i2} = 1] E[Y|Z_{i1} = 0, Z_{i2} = 1]$
- $\mu_3 > 0$ if a first-born female sibling causes the boys to be more valuable.

	(1) Firmt have					(2)				(3)				
	First-born					Second-born				Third-born				
	Boy Second-born		Girl Second-Born		Boy Third-born		Girl Third-born		Boy Fourth-born		Girl Fourth-born			
	Boy	Girl	Boy	Girl	Boy	Girl	Boy	Girl	Boy	Girl	Boy	Girl		
Mean	0.069	0.066	0.067	0.062	0.077	0.068	0.066	0.076	0.093	0.078	0.076	0.082		
Girl-Boy diff.	-0.003		-0.005		-0.009 0.009		009	-0.015		0.005				
	(0.005)		(0.005)		(0.007)		(0.006)		(0.009)		(0.011)			
DID		-0.	002		0.018**			0.020						
	(0.007)				(0.009)			(0.013)						
Covariate Adjusted		,	,			,	,			,	,			
DID		-0.004			0.020**			0.019						
	(0.007)				(0.009)			(0.013)						
N	20,397			12,701			7,676							

	The	Effects	of the	Previou	ıs Siblir	ıg's Sex	on Ge	nder Ga	p in He	ealth		
Pooled sample estimates $(n \ge 3)$	(1) Infant Mortality Birth order, <i>n</i> – 1				(2) Stunting Birth order, $n-1$				(3) Underweight Birth order, <i>n</i> – 1			
	В	юу	Girl		Boy		Girl		Boy		Girl	
	Birth order, n		Birth order, n		Birth order, n		Birth order, n		Birth order, n		Birth order,	
	Boy	Girl	Boy	Girl	Boy	Girl	Boy	Girl	Boy	Girl	Boy	Girl
Mean	0.094	0.080	0.080	0.085	0.216	0.231	0.201	0.229	0.089	0.090	0.087	0.103
Girl-Boy diff.	-0.015*** (0.005)		0.005		0.015 (0.017)		0.028* (0.016)		0.001 (0.012)		0.016 (0.011)	
DID	0.020*** (0.006)				0.013 (0.023)				0.015 (0.016)			
Covariate adjusted		,	*			,	*			,	,	
DID	0.020*** (0.006)				0.018 (0.022)				0.022 (0.016)			
N 33,039				5,064				5,064				

- No improvement in male mortality compared to female mortality after a female birth among second-borns (most generalizable result).
- Among higher birth parities, female infant mortality < male infant mortality by 1.5% points if the previous sibling is male.
- The biological female advantage disappears if the previous sibling is female.
- In the second second
- Limited HH resources seems to be the driving mechanism:
 - Child vaccination is free of charge, and is part of routine procedure in public hospitals.
 - Gender gap in health emerges in high fertility (poor) households while all households exhibit son preference.

- No improvement in male mortality compared to female mortality after a female birth among second-borns (most generalizable result).
- Among higher birth parities, female infant mortality < male infant mortality by 1.5% points if the previous sibling is male.
- The biological female advantage disappears if the previous sibling is female.
- In the second second
- Imited HH resources seems to be the driving mechanism:
 - Child vaccination is free of charge, and is part of routine procedure in public hospitals.
 - Gender gap in health emerges in high fertility (poor) households while all households exhibit son preference.

- No improvement in male mortality compared to female mortality after a female birth among second-borns (most generalizable result).
- Among higher birth parities, female infant mortality < male infant mortality by 1.5% points if the previous sibling is male.
- The biological female advantage disappears if the previous sibling is female.
- In the second second
- Imited HH resources seems to be the driving mechanism:
 - Child vaccination is free of charge, and is part of routine procedure in public hospitals.
 - Gender gap in health emerges in high fertility (poor) households while all households exhibit son preference.

- No improvement in male mortality compared to female mortality after a female birth among second-borns (most generalizable result).
- Among higher birth parities, female infant mortality < male infant mortality by 1.5% points if the previous sibling is male.
- The biological female advantage disappears if the previous sibling is female.
- O No gender gap in vaccination rates (BCG, DPT, Polio, and MMR).
- Solution Limited HH resources seems to be the driving mechanism:
 - Child vaccination is free of charge, and is part of routine procedure in public hospitals.
 - Gender gap in health emerges in high fertility (poor) households while all households exhibit son preference.