CONSTRUCTING REAL-TIME BUSINESS CYCLE INDICATORS FOR TURKEY

S. BORAĞAN ARUOBA

UNIVERSITY OF MARYLAND

aruoba@econ.umd

ÇAĞRI SARIKAYA

CENTRAL BANK OF THE REPUBLIC OF TURKEY

cagri.sarikaya@tcmb.gov.tr

June 24, 2011

ECONOMIC RESEARCH FORUM CONFERENCE

Outline

Motivation

Model and Methodology

🛛 Data

- Results
 - Historical Perspective
 - Real-Time Implementation

Concluding Remarks

Account of the economy Measuring the state of the economy

- Observed indicators: GDP, employment, sales, etc. → arrive at different frequencies
- Lucas, 1977: Latency of business conditions
 - Rather than being shaped by a single variable, business cycles reflect the dynamic interactions (comovements) of many variables
- No commonly-agreed, objective historical account of business cycles in Turkey
- Flexible methodology that allows for mixed frequencies
 Real-time application
 Flexible methodology that allows for be useful in the US (Aruoba et al., 2009)

Analysis covers 1987-2010 period in Turkey.

□ Five indicators are selected wrt the following criteria:

- Representative power
 - ✓ Covering the economy as a whole on sectoral basis (industrial production, GDP, employment)
 - ✓ Considering the production dynamics peculiar to Turkey (intermediate imports)
- Timeliness (electricity production)
- Length of time series

Variable	Source	Frequency	Period	Definition
Electricity Production	TEIAS	Monthly	1985M1-2010M12	Single series from beginning
Industrial Production	τυικ	Monthly	1986M1-2010M12	3 different series (1992, 1997, 2005)
Intermediate Goods Imports	τυικ	Monthly	1994M1-2010M12	2 different series (1994, 2003)
	- 1.117	Monthly	2005M1-2010M12	Single series from beginning
Employment	TUIK	Quarterly	2000Q1-2004Q4	Single series from beginning
GDP	TUIK	Quarterly	1987Q1-2010Q4	2 different series (1987, 1998)

Selected Indicators for Turkey

Time series with different base years are combined.

□ All source series are adjusted for seasonality by using Tramo-Seats.

• We work with annualized monthly/quarterly growth rates.

□ Employment: announcement frequency is monthly but original data are MA(3) → converted to monthly. A dynamic factor model with a monthly base frequency.

The unobserved factor evolves according to the following transition equation:

$$\begin{split} x_t &= \rho_1 x_{t-1} + \rho_2 x_{t-2} + \rho_3 x_{t-3} + e_t \\ & var(x_t) = 1 \end{split}$$

Aeasurement equations:

 $y_{t} = \alpha + \beta x_{t} + u_{t} \qquad u_{t}: AR(3) \text{ process} \qquad \text{(for monthly variables)}$ $y_{t} = \alpha + \beta (x_{t} + x_{t-1} + x_{t-2}) + (u_{t} + u_{t-1} + u_{t-2}) \qquad \text{(for quarterly GDP)}$ $y_{t} = \alpha + (\frac{\beta}{3}) (x_{t} + x_{t-1} + x_{t-2}) + (\frac{1}{3})(u_{t} + u_{t-1} + u_{t-2}) \qquad \text{(for quarterly employment)}$

Once the model is written in state-space form, factor extraction method is straightforward:

- Kalman filter with the forecast error decomposition,
- Maximum likelihood to estimate the model,
- Kalman smoother to obtain an estimate of the factor.
- Typical applications of unobserved component models: Output gap, NAIRU, etc.
 - How does your unobserved component evolve?
 - How do you relate it to observed variables?

Information Content of Selected Indicators

Estimation Results

Variable	Frequency	С	beta	
IP	М	3.92	17.72	
ELEC	М	6.91	5.91	
INTER	М	9.55	34.27	
GDP	Q	4.04	3.91	
EMP	M and Q	1.60	2.55	

Correlation of Factor with Indicators

IP	ELEC	INTER	GDP	EMP (monthly)	EMP (quarterly)
0.624	0.324	0.592	0.578	0.431	0.070

All indicators proved to be useful in generating economically and statistically significant value-added.

Information Content of Selected Indicators

Dependent Variable: Factor					
# of obs.	200	87	67	22	
IPM_STD	0.44	0.50	0.32	0.31	
	12.25	9.54	7.60	3.60	
ELECM_STD	0.13	0.07	0.12	0.03	
	4.11	1.90	3.57	0.46	
INTERM_STD	0.35	0.41	0.26	0.40	
	11.31	8.92	7.31	3.71	
EMPMM_STD	-	0.19	-	0.04	
	-	5.43	-	0.62	
GDPQ_STD	-	-	0.36	0.37	
	-	-	9.92	5.23	

Implicit Weights*

* t-statistics in italic form.

Correlations between indicators blurs the individual contributions.
 Add more lags to reveal a more realistic picture about implicit weights.

A Real Economic Activity Indicator for Turkey

Business Conditions Index (BCI)

Turkey vs. Developed Economies

□ Higher volatility, sharp reversals around zero

- Coefficient of variation \rightarrow US: 20.7, Japan: 2.7, Turkey: 43.1
- Turkey could not settle on a sustained growth path (boom-bust cycles)

Larger standard error band

- Data uncertainty
- Harder to assess economic stance

A Real Economic Activity Indicator for Turkey

□ Index picks up movements in GDP, even without having GDP as an observable.

However, forecasting (here 'nowcasting') growth is not a direct purpose. We focus on depicting latent 'business conditions', determined by a set of macro variables.

How to Detect Recessions

□ Data uncertainty \rightarrow use of upper band instead of the factor itself (95 % probability that the factor < 0.)

 \Box Temporary shocks \rightarrow eliminate one-time sharp spikes

 \Box How severe is the contraction to call it a 'recession' \rightarrow at least two (or more) months

13

How to Detect Recessions

□ Shaded regions cover only two months → too short-lived to deem as 'recession'?

□ Increasing the criteria to 3 months, 1991 and 1999 drops.

How to Detect Recessions

- ❑ Severity → both index level and duration
 Upper bound remained at negative levels for five consecutive months.
- □ Prolonged recession in 2008 → early phases are not reflected under this criteria.

Real-Time Implementation

Historical Perspective vs. Real-Time

Historical analysis provides useful information about the past experience of the Turkish economy.

■ Three major crises → 1994, 2001, 2008-09

□ Future information increases the accuracy of the index

 What about end-sample? (which in fact contains the most valuable information for policy conduct)

Decision makers need timely and accurate information.

- Importance of representative, high-frequency data
- Real-time performance

Real-Time Implementation

• What will happen when new data arrive?

The system is estimated until the end of 2010, the index is computed with fixed parameters throughout 2011. Revisions, i.e. re-estimation, will be made annually.

			Announcement	Available	
Variable	Source	Frequency	Dates	Until	Lags
Electricity Production	TEIAS	Daily	Everyday	Day Before	1 Day
Industrial Production	τυικ	Monthly	June 8th	April 2011	2 Months
Intermediate Goods Imports	τυικ	Monthly	June 10th	April 2011	2 Months
Employment	τυικ	Monthly	June 15th	April 2011	2 Months
GDP	τυικ	Quarterly	June 30th	2011-Q1	1 Quarter

Release Schedule of Variables in a Typical Month

As of end-June, even May outlook is unclear.

 Electricity production is the most timely variable, while GDP becomes available with one-quarter lag.

Real-Time Implementation A Prototype Empirical Application

□ What do recent data suggest?

- Business conditions has weakened compared to 2010 and early-2011.
- Recession? Upper bound still remains positive.

□ How to detect recessions in real-time → More stringent criteria due to increased uncertainty (larger error bands at the end of the sample) Historical account of business cycles in Turkey is demonstrated.

- We incorporated variables at different frequencies to optimally extract latent state of macroeconomic activity.
- An explicit quantitative criteria is provided to detect recessions.
- Using the index, one can quantify and thus compare the severity of turbulence/recession periods.

Dating recessions in real-time is a more demanding task due

to higher uncertainty about the future.

- Coincident indicators are useful as long as information comes timely.
- Forward-looking policy conduct → Need for 'leading' indicators (with good forecast properties)

Under the current policy setting the index,

- Will be updated on a regular basis and released at pre-announced dates.
- Should not be perceived as an intermediate target.
- Is an estimate of current stance \rightarrow subject to change with new data

Existing literature pave the way for possible extensions:

- Inclusion of higher frequency data (i.e. financial data, any variable tracking daily transactions)
- Construction of a composite leading index (CLI)
- Incorporating non-linearity, exploring threshold levels (regimeswitching models)
- Integrating stochastic process of data revisions → enrich real-time analysis but costly in this model framework

CONSTRUCTING REAL-TIME BUSINESS CYCLE INDICATORS FOR TURKEY

S. BORAĞAN ARUOBA

UNIVERSITY OF MARYLAND

aruoba@econ.umd

ÇAĞRI SARIKAYA

CENTRAL BANK OF THE REPUBLIC OF TURKEY

cagri.sarikaya@tcmb.gov.tr

June 24, 2011

ECONOMIC RESEARCH FORUM CONFERENCE