
On the Investment Implications of Bankruptcy Laws∗

Preliminary and incomplete. Please do not cite without permission.

Özgür Kıbrıs† Arzu Kıbrıs

Sabancı University

September 2, 2009

∗Part of this research was completed when we were visiting the University of Rochester. We would like

to thank this institution for its hospitality. We would also like to thank Pradeep Dubey, Bhaskar Dutta, and

Ehud Kalai for comments and suggestions. The first author thanks to the Turkish Academy of Sciences for

financial support under a TUBA-GEBIP fellowship. The second author thanks to TUBITAK for financial

support under a TUBITAK-BIDEP fellowship. All errors are ours.
†Corresponding author: Faculty of Arts and Social Sciences, Sabanci University, 34956, Istanbul, Turkey.

E-mail: ozgur@sabanciuniv.edu Tel: +90-216-483-9267 Fax: +90-216-483-9250

1



Abstract

Axiomatic analysis of bankruptcy problems reveals three major solution rules: (i) the pro-

portional rule (PRO), (ii) the constrained equal awards rule (CEA), and (iii) the constrained

equal losses rule (CEL). The literature offers quite a large number of characterizations for

each one of these rules and in this sense, no one of the three seems to be more central than

the others. However, most real life bankruptcy procedures implement only one of these rules:

PRO. (The typical real life rule first partitions the claimants into priority groups, then uses

PRO in each group). In this paper, we try to explain why in applications PRO has been

more popular than the other three. One possible explanation, overlooked by the axiomatic

literature, may lie in these rules’ implications on the investment behavior in the society. To

explore this possibility, we construct a noncooperative game in which two players simultane-

ously choose how much to invest in a risky firm. (The players have CARA utility functions

on money with possibly different risk aversion parameters). The outcome of investment is

uncertain: if the firm succeeds, each player receives a positive return on his investment;

however, with a positive probability, the firm goes bankrupt. In case of bankruptcy, the

assets of the firm are liquidated and allocated among the investors according to a prespec-

ified bankruptcy rule. For each of the four bankruptcy rules, we analyze its induced Nash

equilibrium investment behavior. Particularly, we compare the total equilibrium investment

induced by PRO to that of the other three rules. Our first result is that the equilibrium total

investment under PRO always exceeds that of CEA. The comparison of PRO to CEL is not

as sharp. There are three types of equilibria of the investment game under CEL and two of

them always induce higher total investment than does PRO. The third type of equilibrium

under CEL, on the other hand (i) always induces less total investment than PRO and (ii)

induces more investment than CEA if the agents are sufficiently different in their attitudes

toward risk.
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1 Introduction

Following the seminal work of O’Neill (1982), a vast literature focused on the axiomatic

analysis of “bankruptcy problems”. As the name suggests, a canonical example to this

problem is the case of a bankrupt firm: the monetary worth of a bankrupt firm (hereafter,

the estate) is to be allocated among its creditors. Each creditor holds a claim on the firm

and the firm’s liquidation value is less than the total of the creditors’ claims.

The axiomatic literature provided a large variety of “bankruptcy rules” as solutions to

this problem. Among them, three are significantly more prominent than the others. The

Proportional rule (PRO) suggests to allocate the estate proportionally to the claims. The

Constrained Equal Awards rule (CEA) suggests equal division of the estate, subject to the

constraint that no agent receive more than his claim. The Constrained Equal Losses rule

(CEL) alternatively suggests to equate across agents, the difference between his claim and

his share, subject to the constraint that no agent receive a negative share.

There is also a more applied literature on real-life bankruptcy problems (e.g. see Atiyas,

1995; Hart, 1999, Stiglitz, 2001). While this literature focuses on a wide range of issues and

cases, it also deals with the problem considered by the axiomatic bankruptcy literature.1 It

follows from this applied literature that, in real-life bankruptcy problems of this kind, almost

every country uses the following rule. First, creditors are sorted into different priority groups.

For example, government organizations, corporate creditors, and individual creditors might

form different priority groups. These groups are served sequentially. That is, a creditor is

not awarded a share until creditors in higher priority groups are fully reimbursed. Second, in

each priority group, the shares of the creditors are determined in proportion to their claims,

that is, according to PRO.

The actual bankruptcy laws seem to have preferred PRO over the other three rules. The

rationale behind this choice might be purely historical. Or it might be that governments at-

tach more importance to the axioms that characterize PRO over the axioms that characterize

the other rules.

In this paper, we explore another explanation to the popularity of PRO. Alternative

bankruptcy rules affect the investment behavior in a country in different ways. In a way, each

rule induces a different noncooperative game among the investors. Comparing the equilibria

1In the US bankruptcy law, this problem is referred to as Chapter 7 bankruptcy.
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of these games, in terms of total investment or social welfare, might provide us ways of

comparing alternative bankruptcy rules in a way that is not considered in the axiomatic

literature.

To this end, for each bankruptcy rule, we construct a simple game among a set of in-

vestors who simultaneously choose how much money to invest in a firm. The total of these

investments determine the value of the firm. The firm is a lottery which either brings a

positive return or goes bankrupt. In the latter case, its remaining value is allocated among

the investors according to a prespecified bankruptcy rule. For each bankruptcy rule, we

analyze the Nash equilibria of the corresponding investment game. We then compare these

equilibria.

In our model, agents have Constant Absolute Risk Aversion preferences and are ordered

according to their degree of risk aversion. The agents do not face liquidity constraints and

thus, their income levels are not relevant. However, as is standard in the literature, it is

possible to interpret an agent’s degree of risk aversion to be negatively correlated by his

income level. Namely, richer agents are less risk averse than poorer ones. Alternatively, each

agent can be taken to be an investment fund. In this case, the income level is irrelevant. The

risk-aversion parameter attached to each investment fund can be interpreted as the type of

that fund.

Our main results are as follows. In Section 3, we analyze Nash equilibria under PRO,

CEA, abd CEL respectively. In Proposition 1, we show that there always is a unique dom-

inant strategy equilibrium under PRO. For the other three rules, we present examples to

demonstrate that a Nash equilibrium does not always exist. Thus, the other results, Propo-

sitions 3 (for CEA), 4 (for CEL), 15, and 18 (both for TAL), present necessary conditions

on equilibria. In Proposition 3, we show that there is only one type of Nash equilibrium in

which no agent is fully refunded and thus, they receive equal shares in case of bankruptcy.

This is not the case for the CEL rule. In Proposition 4, we show that three different types

of equilibria are possible under the CEL rule. In a Type 1 equilibrium under CEL, both

agents receive positive shares in case of bankruptcy (and thus choose positive investment

levels). In a Type 2 equilibrium under CEL, one agent chooses zero investment. The other

agent, being the only investor, receives a share proportional to his investment (and thus,

his optimal investment level is equal to that under PRO). In a Type 3 equilibrium under

CEL, one agent receives zero share in case of bankruptcy but nevertheless, chooses a positive
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investment level.

We then compare these equilibria in Section 4. In Proposition 5, we show that in equilib-

rium, PRO induces more total investment than CEA. We then compare equilibria under CEL

and PRO. In Propositions 6 and 8, we show that Type 1 and 3 equilibria under CEL induce

more total investment than PRO. We then show in Proposition 7 that Type 2 equilibria

under CEL induces less total investment than PRO. This is because in a Type 2 equilibrium

one agent chooses zero investment and the other chooses the same investment level as he

would choose under PRO.

Finally, we compare in Proposition 9, total investment under the CEL and CEA rules.

Due to previous results, total investment in a Type 1 or Type 3 equilibrium, under the CEL

rule exceeds total investment under the CEA rule. A Type 2 equilibrium can however induce

smaller total investment if the agents are sufficiently similar in terms of their risk aversion

attitudes.

Related Literature.

The axiomatic literature on bankruptcy and taxation problems contains many studies

that analyze the properties of one or several of the four main rules. For example, Dagan

(1996), Schummer and Thomson (1997), Herrero and Villar (2002), and Yeh (2001) analyze

properties of CEA. Yeh (2001a), Herrero and Villar (2002), and Herrero (2003) analyze prop-

erties of CEL. Aumann and Maschler (1985) and the following literature discusses properties

of TAL. O’Neill (1982), Moulin (1985a,b), Young (1988), Chun (1988a), de Frutos (1999),

Ching and Kakkar (2000), Chambers and Thomson (2002), and Ju, Miyagawa, and Sakai

(2007) analyze properties of PRO. Thomson (2003 and 2008) presents a detailed review of

the extensive axiomatic literature on bankruptcy and taxation problems.

There are previous papers that employ game theoretical rules to analyze bankruptcy

problems. Aumann and Maschler (1985), Curiel, Maschler, and Tijs, (1987), and Dagan and

Volij (1993) relate bankruptcy rules to cooperative game theoretical solutions. Chun (1989)

presents a noncooperative game that implements an egalitarian surplus sharing rule. Dagan,

Serrano, and Volij (1997) present a noncooperative game that implements a large family of

consistent bankruptcy rules by employing the rule’s two-person version in the design. Chang

and Hu (2008) carry out a similar analysis for a class of “f-just” rules. Herrero (2003)

implements the Constrained Equal Awards and Constrained Equal Losses bankruptcy rules.

Garcia-Jurado, Gonzalez-Diaz, and Villar (2006) present noncooperative games for a large
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class of “acceptable” rules. None of these paper however focus on investment implications

of bankruptcy rules.

This paper is closely related to Karagozoglu (2008) who also designs a noncooperative

game and analyzes investment implications of a class of bankruptcy rules that contains

PRO, CEA, and CEL. The main differences between our models are as follows. First, in

Karagozoglu (2008) there are two types of agents (high income and low income) and there is

an arbitrary number of agents of each type. Due to complexities introduced by the following

items, we focus on the two-agent case. Second, in Karagozoglu (2008) agents choose between

zero or full investment of their income. In our model, agents are allowed choose any amount

of investment. Third, in Karagozoglu (2008) agents are risk neutral. In our model, agents

are risk averse and possibly heterogenous in their attitude towards risk. (Alternatively,

Karagozoglu (2008) introduces heterogeneity in income levels). Our results are in agreement

in comparison of total investment under the PRO and CEA rules. Due to the aforementioned

differences, however, we obtain different results when comparing the PRO and CEL rules.

In Karagozoglu (2008) total investment induced by PRO exceeds that of CEL. In our model,

however, this only happens in one type of equilibrium. There are two other types of equilibria

where CEL induces more total investment than PRO.

2 Model

Let N = {1, 2} be the set of agents. Each i ∈ N has the following Constant Absolute

Risk Aversion (CARA) utility function ui : R+ → R on money:

ui(x) = −e−aix.

Assume that each agent i is risk averse, that is, ai > 0. Also assume that a1 ≤ a2.

Each agent i invests si ∈ R+ units of wealth on a risky company. The company has
value V0 =

P
N si after investments. With probability p ∈ [0, 1], this value brings a return

r ∈ [0, 1] and becomes V h
1 = (1+ r)V0. With the remaining probability (1−p), the company

goes bankrupt and its value becomes V l
1 = βV0 for β ∈ (0, 1).

In case of bankruptcy, the value of the firm is allocated among the agents according to

a prespecified bankruptcy rule. Formally, a bankruptcy problem is a vector of claims

c = (c1, c2) ∈ R2+ and an endowment E ∈ R+ satisfying
P

N ci ≥ E. Let B be the class of
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all bankruptcy problems. A bankruptcy rule F assigns each (c, E) ∈ B to an allocation
x ∈ R2+ satisfying

P
xi = E. In this paper, we will focus on the following four bankruptcy

rules.

The Proportional Rule (PRO) is defined as follows: for each i ∈ N ,

FP
i (c, E) = λci

where λ ∈ R+ satisfies λ
P

N ci = E. The Constrained Equal Awards rule (CEA) is

defined as

FA
i (c, E) = min{ci, ρ}

where ρ ∈ R+ satisfies
P

N min{ci, ρ} = E. The Constrained Equal Losses rule (CEL)

is defined as

FL
i (c, E) = max{ci − ρ, 0}

where ρ ∈ R+ satisfies
P

N max{ci − ρ, 0} = E. Finally, the Talmudic rule (TAL) can be

defined as a mixture of the PRO, CEA and CEL rules (e.g. see Dagan, Serrano, and Volij

(1997)):

F T
i (c, E) =


FA
i (0.5c, E) if E < 0.5

P
N ci,

FP
i (c, E) if E = 0.5

P
N ci.

0.5ci + FL
i (0.5c, E − 0.5

P
N cj) if E > 0.5

P
N ci.

In our model, the bankrupt firm retains β fraction of its capital. Thus E = β
P

N ci is a

function of c. As a result we will write F (c) instead of F (c, E).

For each bankruptcy rule F , we analyze the following investment game it induces over

the agents. Each i ∈ N has the strategy set Si = R+ from which he chooses an investment

level si. Let S =
Y
N

Si. A strategy profile s ∈ S corresponds to the following lottery for

agent i:

ωF
i (s) =

(
(1 + r)si − si with probability p,

Fi(s)− si with probability (1− p).

Note that Fi(s)− si ≤ 0.
The interpretation is that the agent initially borrows si at an interest rate normalized to

1. If the investment is successful, he receives (1 + r) si, pays back si, and is left with his profit

rsi. In case of bankruptcy, he only receives back Fi(s) and has to pay back si, so his net profit
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becomes Fi(s) − si. The same lottery is obtained from an environment where each agent i

allocates his monetary endowment between a riskless asset (whose return is normalized to

1) and the risky company. In this second interpretation, assume that the agent does not

have a liquidity constraint. That is, he is allowed to invest more than his endowment. This

assumption only serves to rid us from (the unrealistic) boundary cases where some agents

spend all their monetary endowment on the risky firm. Alternatively, one can impose a

liquidity constraint but focus on equilibria which are in the interior of the strategy spaces.

Agent i’s expected payoff from strategy profile s ∈ S is thus

UF
i (s) = pui(rsi) + (1− p)ui(Fi(s)− si).

= −pe−airsi − (1− p)e−aiFi(si,s−i)+aisi

Let UF =
¡
UF
1 , U

F
2

¢
. The investment game induced by the bankruptcy rule F is

then defined as

GF = hS,UF i.
Let �(GF ) denote the set of Nash equilibria of GF .

3 Equilibria Under Alternative Bankruptcy Rules

We start by analyzing the Nash equilibria of each game.

3.1 Proportional Rule (PRO)

PRO, as a function of the investment levels, is defined as FP
i (s) = βsi. Remember that

UF
i (s) = −pe−airsi − (1− p)e−aiFi(si,s−i)+aisi .

Thus, agent i’s utility under PRO can be written as

UP
i (s) = −pe−airsi − (1− p)eaisi(1−β).

Note that the payoff function of agent i is independent of the other agent’s investment level.

Thus, so is the best response of agent i. As a result, the investment game under PRO has a

dominant strategy equilibrium, as characterized in the following result.
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Proposition 1 The investment game under PRO has a unique dominant strategy equilib-

rium s∗ in which for each i ∈ N, s∗i = max
n
0, 1

ai(r+1−β) ln
³

pr
(1−p)(1−β)

´o
.

Note that if pr > (1 − p)(1 − β), both agents choose a positive investment level at

the dominant strategy equilibrium. This condition simply compares the return on unit

investment in case of success, r, weighted by the probability of succes, p, with the loss

incurred on unit investment in case of failure, (1− β) , weighted by the probability of failure.

(1− p). Investing on the firm is optimal if the returns in case of success outweigh the losses

incurred in case of failure.

It is interesting to note that the optimal investment level s∗i is not always increasing in

the rate of return in case of success, r. The necessary and sufficient condition for s∗i to be

increasing in r is s∗i ≤ 1
air

. For optimal investment levels higher than 1/air, agent i decreases

his optimal investment level in response to an increase in r.

On the other hand, the optimal investment level is always increasing in the probability

of success p and the fraction of the firm that survives bankruptcy β.

Finally note that the optimal investment level s∗i is decreasing in the agent’s degree of

risk aversion ai. Thus, at the dominant strategy equilibrium, the less risk averse agent invests

more than the other.

3.2 Constrained Equal Awards Rule (CEA)

CEA, as a function of the investment levels, is defined as FA
i (s1, s2) = min{si, ρ} where

ρ ∈ R satisfiesPN min{sj, ρ} = β
P

N sj. The function FA
i is written below more explicitly:

if agent i invests too little (the first line), he gets full refund and if he invests too much (the

third line), the other agent gets full refund. For in-between investment levels (the second

line), the liquidation value of the firm is equally allocated between the two agents.

FA
i (si, sj) =


si if si ≤ β

2−βsj,
β
2
(si + sj) if β

2−βsj ≤ si ≤ 2−β
β
sj,

β(si + sj)− sj if si ≥ 2−β
β
sj.

Remember that

UF
i (s) = −pe−airsi − (1− p)e−aiFi(si,s−i)+aisi .
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Figure 1: The investment game induced by CEA does not have a Nash equilibrium under

the parameter values p = 0.8, β = 0.6, r = 0.5, a1 = 0.4, and a2 = 4. The area between the

two blue rays satisfies β
2−βs1 ≤ s2 ≤ 2−β

β
s1.

Thus, the utility function of agent i is

UA
i (si, sj) =


−pe−airsi − (1− p) if si ≤ β

2−βsj ,

−pe−airsi − (1− p)e−ai
β
2
(si+sj)+aisi if β

2−βsj ≤ si ≤ 2−β
β
sj,

−pe−airsi − (1− p)eai(1−β)(si+sj) if si ≥ 2−β
β
sj .

Note that, agent i’s payoff function is different in each one of the three intervals. To

determine his best response to s−i, agent i compares his payoffs from each one of his optimal

choices in these intervals and picks the one(s) that yield the highest payoff. Lemma 10 in the

appendix constructs each agent’s best response correspondence under the CEA rule. The

following example uses it to show that under CEA, the investment game need not have an

equilibrium.

Example 1 Let N = {1, 2} . Let p = 0.8, β = 0.6, and r = 0.5. Let a1 = 0.4 and a2 = 4.

Figure 1 shows the agents’ best response correspondences under these parameter values. The

red best response curve belongs to agent 1 and the black belongs to agent 2.As can be observed

in the figure, the two best response curves do not intersect. Thus, the investment game has

no Nash equilibria under these parameter values.
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We also observe that there is no Nash equilibrium where an agent, in case of bankruptcy,

is fully refunded. This means that the two best response curves can only intersect in the

middle section of Figure 1, that is, when β
2−βsj < si <

2−β
β
sj.

Lemma 2 There is no Nash equilibrium (s∗1, s
∗
2) where for some i ∈ N,FA

i (s
∗
1, s

∗
2) = s∗i > 0.

By Lemma 2, we know that at any equilibrium s∗ of the investment game under CEA,

the bankruptcy rule CEA awards the agents the following allocation:

FA(s∗) = (
β

2

X
N

s∗j ,
β

2

X
N

s∗j).

We make use of this fact in the following proposition.

Proposition 3 If s∗ is a Nash equilibrium of the investment game under CEA, then for

each i ∈ N, s∗i = max
½
0,
(1+r−β

2 )aj+
β
2
ai

aiaj(r+1)(r−β+1) ln
µ

pr

(1−p)(1−β
2 )

¶¾
.

Note that if pr > (1 − p)(1 − β
2
), both agents choose a positive investment level at the

Nash equilibrium of the investment game under CEA. This condition simply compares the

return on unit investment in case of success, r, weighted by the probability of succes, p, with

the loss incurred on unit investment in case of failure,
¡
1− β

2

¢
, weighted by the probability

of failure, (1− p). Investing on the firm is optimal if the returns in case of success outweigh

the losses incurred in case of failure. Note that, the only difference between this condition

and the one discussed for PRO at the end of last section is the β
2
(instead of β for PRO).

The reason is simple. Under PRO, one additional unit of investment, in case of bankruptcy

brought a return of β. However, since the CEA rule divides the return equally among the

two agent, one additional unit of investment under CEA, will only bring a return of β
2
(the

other half being transfered to the other agent).

Similar to the case of PRO, the optimal investment level under CEA, s∗i is not always

increasing in the rate of return in case of success, r. The necessary and sufficient condition

for s∗i to be increasing in r is

s∗i ≤
2

aiajr

¡¡
1 + r − β

2

¢
aj +

β
2
ai
¢2¡

(1 + r)2 + (1 + r − β)2
¢
aj + (2r + 2− β)βai

.

For optimal investment levels higher than this critical value, agent i decreases his optimal

investment level in response to an increase in r.
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On the other hand, the optimal investment level is always increasing in the probability

of success p and the fraction of the firm that survives bankruptcy β. This is also similar to

PRO.

Note that the optimal investment level s∗i is decreasing in the agent’s degree of risk

aversion ai. Thus, at the Nash equilibrium, the less risk averse agent invests more than the

other.

Finally note that agent i’s optimal investment level s∗i also depends on the other agent’s

degree of risk aversion aj. (This relationship did not exist under the Proportional rule.) As

aj increases, that is, as the other agent gets more risk averse, agent i’s optimal investment

level decreases. The simple reason is as follows. As aj increases’ agent j decreases his

investment level and thus, the amount that will be shared in case of bankruptcy. However,

since agent j continues to get an equal share as agent i, agent i’s return to investment in

case of bankruptcy decreases in response. Thus, agent i’s equilibrium investment level also

decreases.

3.3 Constrained Equal Losses Rule (CEL)

CEL, as a function of the investment levels, is defined as FL
i (s) = max{si−ρ, 0}where ρ ∈ R+

satisfies
P
max{sj − ρ, 0} = β

P
sj. The function FL

i is written below more explicitly: if

agent i invests too little (first line), he gets zero refund and if he invests too much (third

line), the other agent gets zero refund. For in-between investment levels (the second line),

the liquidation value of the firm is allocated to equate the agents’ losses.

FL
i (si, sj) =


0 if si ≤ 1−β

1+β
sj,

si − 1−β
2
(si + sj) if 1−β

1+β
sj ≤ si ≤ 1+β

1−βsj,

β(si + sj) if si ≥ 1+β
1−βsj.

Remember that

UF
i (s) = −pe−airsi − (1− p)e−aiFi(si,s−i)+aisi .

Thus, the utility function of agent i becomes

UL
i (si, sj) =


−pe−airsi − (1− p)eaisi if si ≤ 1−β

1+β
sj

−pe−airsi − (1− p)eai
1−β
2
(si+sj) if 1−β

1+β
sj ≤ si ≤ 1+β

1−βsj
−pe−airsi − (1− p)eai(1−β)si−aiβsj if si ≥ 1+β

1−βsj
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Figure 2: The investment game induced by CEL does not have a Nash equilibrium under

the parameter values p = 0.8, β = 0.8, r = 0.2, a1 = 1.2 and a2 = 1.8. The area between the

two blue rays satisfies 1−β
1+β

s1 ≤ s2 ≤ 1+β
1−βs1.

Note that, agent i’s payoff function is different in each one of the three intervals. To

determine his best response to s−i, agent i compares his payoffs from each one of his optimal

choices in these intervals and picks the one(s) that yield the highest payoff. The following

example uses lemmas 11 and 12 to show that under CEL, the investment game need not

have an equilibrium.

Example 2 Let N = {1, 2} . Let p = 0.8, β = 0.8, and r = 0.2. Let a1 = 1.2 and a2 = 1.8.

The figure below shows the agents’ best response correspondences under these parameter

values. The red best response curve belongs to agent 1 and the black belongs to agent 2.

As can be observed in the figure, the two best response curves do not intersect. Thus, the

investment game has no Nash equilibria under these parameter values.

The following proposition determines the form of Nash equilibria.

Proposition 4 If s∗ is a Nash equilibrium of the investment game under CEL, then it has

either one of the following forms.
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Type 1. s∗i = max
n
0, (2r−β+1)

2r(r−β+1)
³
1
ai
− (1−β)

(1−β+2r)
1
aj

´
ln
³

2pr
(1−p)(1−β)

´o
for both i ∈ N or

Type 2. s∗i = 0 and s
∗
j =

1
aj(1+r−β) ln

³
pr

(1−p)(1−β)
´
, or

Type 3. s∗i =
1

ai(1+r)
ln
³

pr
1−p
´
and s∗j =

1
aj(r−β+1) ln

³
pr

(1−β)(1−p)
´
+ β

ai(r+1)(r−β+1) ln
³

pr
1−p
´
.

Let us analyze how these three equilibria change in response to a change in the parameters.

3.3.1 Type 1 Equilibrium

For an equilibrium of this kind to exist, the risk aversion levels of the two agents must be

sufficiently close. More precisely,

1 ≤ a2
a1

<
(1− β + 2r)

(1− β)
.

Note that, then 1
ai
− (1−β)

(1−β+2r)
1
aj

> 0 for both agents. Therefore, if pr > (1 − p)(1−β
2
), both

agents choose a positive investment level at the Nash equilibrium of the investment game

under CEL. This condition simply compares the return on unit investment in case of success,

r, weighted by the probability of succes, p, with the loss incurred on unit investment in case

of failure,
¡
1−β
2

¢
, weighted by the probability of failure, (1− p). Investing on the firm is

optimal if the returns in case of success outweigh the losses incurred in case of failure. Note

that, the only difference between this condition and the one discussed for PRO at the end

of last section is the
¡
1−β
2

¢
term (which was

¡
1− β

2

¢
in case of CEA and (1− β) in case of

PRO, as discussed in the previous sections). The reason is simple. The CEL rule, in a Type

1 equilibrium, divides the total loss, (1− β), equally among the two agents.

Similar to the case of PRO, the optimal investment level under CEA, s∗i is not always

increasing in the rate of return in case of success, r. The necessary and sufficient condition

for s∗i to be increasing in r is

s∗i >
1

2raiaj (r − β + 1)2
¡
ajr

2 + aj (r + 1− β)2 − ai (1− β) (1− β + 2r)
¢µ
ln

µ
2pr

(1− p) (1− β)

¶¶2
.

For optimal investment levels lower than this critical value, agent i decreases his optimal

investment level in response to an increase in r. Note that, due to the second term, this crit-

ical value can be negative. In that case, agent i always increases his equilibrium investment

in response to an increase in the interest rate r.

14



On the other hand, the optimal investment level is always increasing in the probability

of success p and the fraction of the firm that survives bankruptcy β. This is also similar to

PRO.

Note that the optimal investment level s∗i is decreasing in the agent’s degree of risk

aversion ai. Thus, at the Nash equilibrium, the less risk averse agent invests more than the

other.

Finally note that agent i’s optimal investment level s∗i also depends on the other agent’s

degree of risk aversion aj. (This relationship did not exist under the Proportional rule.) As

aj increases, that is, as the other agent gets more risk averse, agent i’s optimal investment

level decreases. The simple reason is as follows. As aj increases’ agent j decreases his

investment level and thus, the amount that will be shared in case of bankruptcy. However,

since agent j continues to get an equal share as agent i, agent i’s return to investment in

case of bankruptcy decreases inresponse. Thus, agent i’s equilibrium investment level also

decreases.

4 Comparison of Equilibria

Note that, in equilibrium under PRO and CEA rules, a typical agent chooses the following

investment levels:

sPi = max

½
0,

1

ai (r + 1− β)
ln

µ
pr

(1− p)(1− β)

¶¾
,

sAi = max

(
0,
(r + 1)− β

2
+ β

2
ai

1
aj

ai (r + 1) (r + 1− β)
ln

Ã
pr

(1− p)
¡
1− β

2

¢!)

Under the CEL rule, the equilibrium investment level depends on the type of equilibria and

agent. The investment level

sL,1i = max

½
0,
(2r − β + 1)

2r (r − β + 1)

µ
1

ai
− (1− β)

(1− β + 2r)

1

aj

¶
ln

µ
2pr

(1− p) (1− β)

¶¾
is observed at a “type 1” equilibrium, as itemized in Proposition ***. The investment level

sL,2i =
1

ai (1 + r − β)
ln

µ
pr

(1− p) (1− β)

¶

15



is obtained at an equilibrium when the other agent chooses zero investment. Finally, the

investment levels

sL,3,1i =
1

ai (1 + r)
ln

µ
pr

1− p

¶
sL,3,2j =

1

aj (r − β + 1)
ln

µ
pr

(1− β) (1− p)

¶
+

β

ai (r + 1) (r − β + 1)
ln

µ
pr

1− p

¶
are chosen in a type 3 equilibrium.

4.1 Comparison of CEA and Pro

Note that pr

(1−p)(1−β
2 )

< pr
(1−p)(1−β) . Thus, if agent i chooses positive investment under the

CEA rule, he will also do so under PRO rule. Also note that, pr

(1−p)(1−β
2 )
and pr

(1−p)(1−β)are

independent of the agents’ (personal) risk aversion parameters. Therefore, under both rules,

either all agents choose positive investment or all agents choose zero investment.

Now note that, under both rules, the investment choice of an agent is decreasing in his

risk aversion parameter. What is harder to see though is that there is a critical risk aversion

level for agent i,

a∗i =

 ln
³

pr
(1−p)(1−β)

´
ln

µ
pr

(1−p)(1−β
2 )

¶ − 1 + β

2 (r + 1)

 2 (r + 1)

β
aj

for which the equilibrium investment level coincides under the two rule. For smaller risk

aversion level, PRO delivers more investment and for higher risk aversion levels, it delivers

less investment than the CEA rule, as demonstrated in the following example.

Example 3 Let r = 0.3, p = 0.8, β = 0.7, and aj = 1. Agent i’s equilibrium investment as

a function of his risk aversion ai is the solid curve under the CEA rule and the dotted curve

under PRO.
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Agent i’s equilibrium investment as a function of his risk aversion ai is the solid curve

under the CEA rule and the dotted curve under PRO.

We will next compare the two rules in terms of the total investment they induce in

the economy. Since less risk averse agents invest much more than the more risk averse

ones (under both rules) and since these agents invest more under PRO rule, we obtain the

following result.

Proposition 5 If ln
³

pr
(1−p)(1−β)

´
> 0, PRO induces a higher total investment than CEA. If

ln
³

pr
(1−p)(1−β)

´
≤ 0, both rules induce a zero investment level.

Proof. Note that with PRO,

�(GP ) =

 (sP1 , s
P
2 ) if ln

³
pr

(1−p)(1−β)
´
≥ 0,

(0, 0) otherwise.

and with the CEA rule,

�(GA) =

 (sA1 , s
A
2 ) if ln

³
pr

(1−p)(1−β
n
)

´
≥ 0,

(0, 0) otherwise.

The parameter space can be partitioned into three parts. We will formulate each partition

as a case below.

17



Case 1. pr ≤ (1− p)(1− β)

Note that then ln
³

pr
(1−p)(1−β)

´
≤ 0 and thus, �(GP ) = 0. Also, ln

µ
pr

(1−p)(1−β
n)

¶
< 0 holds

and thus, �(GA) = 0.

Case 2. (1− p)(1− β) < pr ≤ (1− p)(1− β
2
)

Note that then ln
µ

pr

(1−p)(1−β
2 )

¶
≤ 0 holds and thus, �(GA) = 0. On the other hand,

ln
³

pr
(1−p)(1−β)

´
> 0 and thus, �(GP ) > 0.

Case 3. (1− p)(1− β
2
) < pr

In this case, ln
³

pr
(1−p)(1−β)

´
> ln

µ
pr

(1−p)(1−β
2 )

¶
> 0. Therefore, �(GA) > 0 and �(GP ) > 0.

Now the total investment level induced by PRO is

IP =
X
N

1

ai (r + 1− β)
ln

µ
pr

(1− p)(1− β)

¶

=

ÃX
N

1

ai

!
1

(r + 1− β)
ln

µ
pr

(1− p)(1− β)

¶
.

Similarly, the total investment level induced by CEA is

IA =
X
N

¡
1 + r − β

2

¢
aj +

β
2
ai

aiaj (r + 1) (r − β + 1)
ln

Ã
pr

(1− p)
¡
1− β

2

¢!

=

ÃX
N

1

ai

!
1

(r + 1− β)
ln

Ã
pr

(1− p)
¡
1− β

2

¢! .

The difference is then

IP − IA =

ÃX
N

1

ai

!
1

(r + 1− β)

Ã
ln

µ
pr

(1− p)(1− β)

¶
− ln

Ã
pr

(1− p)
¡
1− β

2

¢!!

=

ÃX
N

1

ai

!
1

(r + 1− β)
ln

Ã¡
1− β

n

¢
(1− β)

!
> 0.

4.2 Comparison of CEL and Pro

Note that pr
(1−p) <

pr
(1−p)(1−β) <

2pr
(1−p)(1−β) . Thus, if agent i chooses positive investment under

PRO, he will also do so under a Type 1 equilibrium under the CEL rule. Note that, agent

18



i0s investment under PRO is equal to his investment in a type 2 equilibrium under the CEL

rule. Finally, if there is a Type 3 equilibrium, then pr
(1−p) > 1. Thus, agent i also chooses

positive investment under PRO. Also note that these observations are independent of the

agents’ (personal) risk aversion parameters. Therefore, under both rules, either all agents

choose positive investment or all agents choose zero investment.

4.2.1 Comparison of Pro with a Type 1 equilibrium under CEL

Assume pr
(1−p)(1−β) > 1. Then agent i chooses a positive investment level under both rules.

Also, under both rules the investment choice of an agent is decreasing in his risk aversion

parameter. What is harder to see though is that there is a critical risk aversion level for

agent i,

a∗i =

(1− β + 2r)

(1− β)
−

2r ln
³

pr
(1−p)(1−β)

´
(1− β) ln

³
2pr

(1−p)(1−β)
´
 aj

for which the equilibrium investment level coincides under the two rule. In contrast to

the CEA case, for smaller risk aversion level, PRO delivers less investment and for higher

risk aversion levels, it delivers more investment than the CEL rule, as demonstrated in the

following example.

Example 4 Let r = 0.3, p = 0.8, β = 0.7, and aj = 1. Agent i’s equilibrium investment as

a function of his risk aversion ai is the solid curve under the CEL rule and the dotted curve

under PRO.
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Agent i’s equilibrium investment as a function of his risk aversion ai is the solid curve

under the CEL rule and the dotted curve under PRO.
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We will next compare the two rules in terms of the total investment they induce in the

economy. Since less risk averse agents invest much more than the more risk averse ones

(under both rules) and since these agents invest more under the CEL rule, we obtain the

following result.

Proposition 6 If ln
³

2pr
(1−p)(1−β)

´
> 0, Type 1 equilibrium under the CEL rule induces a

higher total investment than PRO. If ln
³

2pr
(1−p)(1−β)

´
≤ 0, both rules induce a zero investment

level.

Proof. The parameter space can be partitioned into three parts. We will formulate each

partition as a case below.

Case 1. 2pr ≤ (1− p)(1− β)

Note that then ln
³

2pr
(1−p)(1−β)

´
≤ 0 and thus, �(GP ) = 0 and �(GL) = 0.

Case 2. (1− p)(1− β) < 2pr ≤ 2(1− p)(1− β)

Note that then ln
³

pr
(1−p)(1−β)

´
≤ 0 holds and thus, �(GP ) = 0. On the other hand,

ln
³

2pr
(1−p)(1−β)

´
> 0 and thus, �(GL) > 0.

Case 3. (1− p)(1− β) < pr

In this case, ln
³

2pr
(1−p)(1−β)

´
> ln

³
pr

(1−p)(1−β)
´
> 0. Therefore, �(GL) > 0 and �(GP ) > 0.

Now the total investment level induced by PRO is

IP =
X
N

1

ai (r + 1− β)
ln

µ
pr

(1− p)(1− β)

¶

=

ÃX
N

1

ai

!
1

(r + 1− β)
ln

µ
pr

(1− p)(1− β)

¶
.

Similarly, the total investment level induced by the CEL rule is

IL =
X
N

(2r − β + 1)

2r (r − β + 1)

µ
1

ai
− (1− β)

(1− β + 2r)

1

aj

¶
ln

µ
2pr

(1− p) (1− β)

¶

=

ÃX
N

1

ai

!
1

(r + 1− β)
ln

µ
2pr

(1− p) (1− β)

¶
.
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The difference is then

IP − IL =

ÃX
N

1

ai

!
1

(r + 1− β)

µ
ln

µ
pr

(1− p)(1− β)

¶
− ln

µ
2pr

(1− p)(1− β)

¶¶

=

ÃX
N

1

ai

!
1

(r + 1− β)
ln

µ
1

2

¶
< 0.

4.2.2 Comparison of Pro with a Type 2 equilibrium under CEL

In a Type 2 equilibrium under the CEL rule, agent i’s investment level is given by

sL,2i =
1

ai (1 + r − β)
ln

µ
pr

(1− p) (1− β)

¶
.

This expression is identical to the one obtained under PRO. However, under CEL, the other

agent chooses a zero investment level while under PRO both agents choose this investment

level. Therefore, we have the following proposition.

Proposition 7 If ln
³

pr
(1−p)(1−β)

´
> 0, the equilibrium under PRO induces a higher total

investment than a Type 2 equilibrium of the CEL rule. If ln
³

pr
(1−p)(1−β)

´
≤ 0, both rules

induce a zero investment level.

4.2.3 Comparison of Pro with a Type 3 equilibrium under CEL

Assume pr
(1−p) > 1. Then all agents choose a positive investment level under both rules.

Also, under both rules the investment choice of an agent is decreasing in his risk aversion

parameter.

First observe that sPi > sL,3,1i . That is, the small investor under the CEL type 3 equi-

librium invests much less than in PRO. On the other hand, sPi < sL,3,2i . That is, the big

investor under the CEL type 3 equilibrium invests much more than in PRO.

The following example demonstrates the three investment levels as a function of risk

aversion.

Example 5 Let r = 0.3, p = 0.8, β = 0.7, and aj = 1. Agent i’s equilibrium investment as

a function of his risk aversion ai is the two solid curves under the CEL rule: the black curve
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is the small investor and the red one, the big investor. The dotted curve is the investment

level under PRO.
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Agent i’s equilibrium investment as a function of his risk aversion ai is the two solid curves

under the CEL rule: the black curve is the small investor and the red one, the big investor.

The dotted curve is the investment level under PRO.

We will next compare the two rules in terms of the total investment they induce in the

economy.

Proposition 8 Assume ln
³

pr
(1−p)

´
> 0. Then, the type 3 equilibrium under the CEL rule

induces a higher total investment than an equilibrium under PRO.

Proof. The total investment level induced by PRO is

IP =
X
N

1

ai (r + 1− β)
ln

µ
pr

(1− p)(1− β)

¶

=

ÃX
N

1

ai

!
1

(r + 1− β)
ln

µ
pr

(1− p)(1− β)

¶
.

Taking agent i to be the small investor, the total investment level induced by the CEL rule

is

IL =
1

ai (1 + r)
ln

µ
pr

1− p

¶
+

1

aj (r − β + 1)
ln

µ
pr

(1− β) (1− p)

¶
+

β

ai (r + 1) (r − β + 1)
ln

µ
pr

1− p

¶
=

ÃX
N

1

ai

!
1

(r + 1− β)
ln

µ
pr

(1− p)(1− β)

¶
+

1

ai (r − β + 1)
ln (1− β)
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The difference is then

IP − IL =
1

ai (r − β + 1)
ln (1− β) < 0.

4.3 Comparison of CEA and CEL

The following proposition compares total investment under the CEL and CEA rules.

Proposition 9 Type 1 and Type 3 equilibria under the CEL rule induce more total invest-

ment than CEA. Type 2 equilibrium under CEL induces more total investment than CEA if

and only if

aj
ai

>

ln

µ
pr

(1−p)(1−β
2 )

¶
ln
³
1−β

2

1−β
´ .

Proof. Under Type 1 and Type 3 equilibria under the CEL rule, Propositions 6 and 8 show

that there is more investment than under PRO. Since, by Proposition 5, PRO always induces

more total investment than the CEA rule, the Type 1 and Type 3 equilibria of the CEL rule

exceed the CEA rule as well.

Total investment in a Type 2 equilibrium under the CEL rule is

IL =
1

ai (1 + r − β)
ln

µ
pr

(1− p) (1− β)

¶
.

Total investment under the CEA rule is

IA =

µ
1

ai
+
1

aj

¶
1

(r + 1− β)
ln

Ã
pr

(1− p)
¡
1− β

2

¢! .

Now

IL − IA =
1

ai (1 + r − β)
ln

Ã
1− β

2

1− β

!
− 1

aj (r + 1− β)
ln

Ã
pr

(1− p)
¡
1− β

2

¢! .

The sign of this expression is not clear. However, note that IL−IA is increasing in aj (where
agent j is the one who chooses zero investment under the Type 2 Equilibrium of the CEL

23



rule). Also, limaj→0 I
L − IA < 0. Solving for IL − IA = 0 we obtain the cutoff. If agent j is

sufficiently more risk averse than agent i, that is if

aj
ai

>

ln

µ
pr

(1−p)(1−β
2 )

¶
ln
³
1−β

2

1−β
´ ,

then IL − IA > 0, the CEL rule induces more investment than the CEA rule.
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5 Appendix

This section contains the proofs.

5.1 Proportional Rule

Proof. (Proposition 1) We first construct the best response correspondence of agent i.

The first derivative of agent i’s utility is

∂UP
i (s)

∂si
= −ai (1− p) (1− β) eaisi(1−β) + aipre

−airsi

and the second derivative is

∂2UP
i (s)

∂s2i
= −a2i (1− β)2 (1− p) eaisi(1−β) − a2i pr

2e−airsi < 0.
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Figure 3: A typical best response correspondence under CEA.

Equating the first derivative to zero, we obtain

si =
1

ai (r + 1− β)
ln

µ
pr

(1− p)(1− β)

¶
.

The best response function of agent i can then be written

BRi(s−i) =

 si if ln
³

pr
(1−p)(1−β)

´
≥ 0,

0 otherwise.

Note that this expression is independent of sj. So it in fact defines a strictly dominant

strategy for each agent i. Thus, the investment game under PRO has a unique dominant

strategy equilibrium s∗ in which for each i ∈ N, s∗i = max {0, si} .

5.2 CEA Rule

The following lemma characterizes agent i’s best response function under the CEA rule. See

Figure 3 for a typical configuration.
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Lemma 10 For each set of parameter values, there are 0 ≤ K1 ≤ K2 such that

BRi (sj) =



β
2−βsj if pr

(1−p)(1−β) < 1,
ln[pr/(1−p)(1−β)]

ai(1+r−β) − 1−β
(1+r−β)sj if pr

(1−p)(1−β) ≥ 1 and 0 ≤ sj ≤ K1,
ln[pr/(1−p)(1−β/2)]

ai(1+r−β/2) + β
2(1+r−β/2)sj if pr

(1−p)(1−β) ≥ 1 and K1 ≤ sj ≤ K2,
β
2−βsj if pr

(1−p)(1−β) ≥ 1 and K2 ≤ sj.

Also, BRi (sj) 6= 2−β
β
sj for all sj ∈ R2+.

Proof. We first calculate the maximizer of each expression in the three piece function

UA
i (si, sj) .

First assume si ≤ β
2−βsj. Then UA

i (si, sj) = −pe−airsi − (1− p). The first derivative is

∂UA
i (si, s−i)
∂si

=
∂ (−pe−airsi − (1− p))

∂si
= aipre

−airsi > 0.

Note that agent i’s payoff is increasing in si. Therefore, the maximizer s1i of U
A
i in the

interval [0, β
2−βsj] is

s1i (sj) =
β

2− β
sj.

Now assume β
2−βsj ≤ si ≤ 2−β

β
sj. Then UA

i (si, sj) = −pe−airsi − (1− p)e−ai
β
2
(si+sj)+aisi .

The first derivative is

∂UA
i (si, s−i)
∂si

= −ai
µ
1− β

2

¶
(1− p) e−ai(

β
2
sj−(1−β

2 )si) + praie
−raisi

and the second derivative is

∂2UA
i (si, s−i)
∂s2i

= −a2i (1− p)

µ
1− β

2

¶2
e−ai(

β
2
sj−(1−β

2
)si) − a2i pr

2e−ai(rsi+1) < 0.

Equating the first derivative to zero, we obtain

si =

ln

µ
pr

(1−p)(1−β
2 )

¶
ai(1 + r − β

2
)
+

β

2(1 + r − β
2
)
sj.

Therefore, the maximizer s2i of U
A
i in the interval [

β
2−βsj,

2−β
β
sj] is

s2i (sj) = median


β

2− β
sj,
2− β

β
sj,

ln

µ
pr

(1−p)(1−β
2 )

¶
ai(1 + r − β

2
)
+

β

2(1 + r − β
2
)
sj

 .
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6
si

-
sj

si = sj(2− β)/β

s3i (sj)

si = sjβ/(2− β)
s2i (sj)

•
s∗j

•
K1

•
s∗∗j

•
s∗∗∗j = K2

6
si

-
sj

Figure 4: The construction in the proof of Lemma 3.

For the third case, assume si ≥ 2−β
β
sj. Then UA

i (si, sj) = −pe−airsi− (1−p)eai(1−β)(si+sj)

and an analysis of the first and the second derivatives gives the unconstrained maximizer

si =
ln
³

pr
(1−p)(1−β)

´
ai(1 + r − β)

− 1− β

(1 + r − β)
sj.

Therefore, the maximizer s3i of U
A
i in the interval [

2−β
β
sj,∞) is

s3i (sj) = max

2− β

β
sj,
ln
³

pr
(1−p)(1−β)

´
ai(1 + r − β)

− 1− β

(1 + r − β)
sj

 .

Comparison of the three local maxima reveals the agent’s best response.

Case 1: pr
(1−p)(1−β) < 1. Then ln

³
pr

(1−p)(1−β)
´

< 0 and thus, s3i (sj) =
2−β
β
sj. Similarly

ln

µ
pr

(1−p)(1−β
2 )

¶
< 0 implies

ln pr

(1−p)(1−β
2 )

ai(1+r−β
2
)

+ β

2(1+r−β
2
)
sj <

β
2−βsj and thus, s

2
i (sj) =

β
2−βsj.

Since UA
³

β
2−βsj

´
> UA (x) for all x ∈ ( β

2−βsj,
2−β
β
sj], we have UA

³
β
2−βsj

´
> UA

³
2−β
β
sj
´
.

This implies

BRi (sj) =
β

2− β
sj.

Case 2: pr

(1−p)(1−β
2 )
≥ 1. Then pr

(1−p)(1−β) > 1. Let s∗j solve s
2
i (sj) =

2−β
β
sj. (This equality

has a solution since the slope of s2i is
β

2(1+r−β
2
)
< β

2−β < 2−β
β
.) Then s∗j =

β ln[pr/(1−p)(1−β/2)]
ai(2+2r−2β−βr) .
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Let s∗∗j solve s3i (sj) =
2−β
β
sj. (This equality has a solution since s3i is downward sloping.)

Then s∗∗j =
β ln[pr/(1−p)(1−β)]
ai(2+2r−2β−βr) . Note that s∗j < s∗∗j .

Now note that UA
i

¡
s2i
¡
s∗j
¢¢

< UA
i

¡
s3i
¡
s∗j
¢¢
and UA

i

¡
s2i
¡
s∗∗j
¢¢

> UA
i

¡
s3i
¡
s∗∗j
¢¢

. Also,

UA
i (s

2
i (.)) is increasing and UA

i (s
3
i (.)) is decreasing. Therefore, there is a unique K1 ∈¡

s∗j , s
∗∗
j

¢
such that UA

i (s
2
i (K1)) = UA

i (s
3
i (K1)) . This implies that

BRi (sj) =


s3i (sj) if 0 ≤ sj < K1,

{s2i (sj) , s3i (sj)} if sj = K1,

s2i (sj) if K1 < sj.

Now let s∗∗∗j solve s2i
¡
s∗∗∗j

¢
= β

2−βs
∗∗∗
j . (This equality has a solution since the slope of s2i

is β

2(1+r−β
2
)
< β

2−β .) Note that

s2i (sj) =


2−β
β
sj if 0 ≤ sj < s∗j ,

ln pr

(1−p)(1−β
2 )

ai(1+r−β
2
)

+ β

2(1+r−β
2
)
sj if s∗j ≤ sj < s∗∗∗j ,

β
2−βsj if s∗∗∗j < sj.

Now, letting K2 = max
©
K1, s

∗∗∗
j

ª
delivers the desired form for BRi. Finally, BRi (sj) 6=

2−β
β
sj for all sj ∈ R2+ since s∗j < K1 < s∗∗j .

Case 3: pr

(1−p)(1−β
2 )

< 1 ≤ pr
(1−p)(1−β) . Let s

∗
j = 0. Let s

∗∗
j solve s

3
i (sj) =

2−β
β
sj. (This equality

has a solution since s3i is downward sloping.) Then s
∗∗
j =

β ln[pr/(1−p)(1−β)]
ai(2+2r−2β−βr) . Note that s∗j < s∗∗j .

Then the same arguments in Case 2 deliver the desired form as well as BRi (sj) 6= 2−β
β
sj for

all sj ∈ R2+.
Proof. (Lemma 2) Suppose there is an equilibrium (s∗1, s

∗
2) and an agent i ∈ N such that

FA
i (s

∗
1, s

∗
2) = s∗i > 0. By definition of F

A, s∗i ≤ β
2−βs

∗
j . However, by Lemma 10 s

∗
i <

β
2−βs

∗
j is

never a best response. So s∗i =
β
2−βs

∗
j . But then, s

∗
j =

2−β
β
s∗i . This, however, contradicts the

second part of Lemma 10.

Proof. (Proposition 3) By Lemma 10, for each i ∈ N

si =

ln

µ
pr

(1−p)(1−β
2 )

¶
ai(1 + r − β

2
)
+

β

2(1 + r − β
2
)
sj.
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To calculate the Nash equilibrium, we let

σi =

ln

µ
pr

(1−p)(1−β
2 )

¶
ai(1 + r − β

2
)
, ρ =

β

2(1 + r − β
2
)

and solve the general system: "
1 −ρ
−ρ 1

#"
s1

s2

#
=

"
σ1

σ2

#
.

Since ρ < 1, there is a unique solution to this system. Solving it gives,

s∗i =

¡
1 + r − β

2

¢
aj +

β
2
ai

aiaj (r + 1) (r − β + 1)
ln

Ã
pr

(1− p)
¡
1− β

2

¢! .

Note that, the sign of s∗i depends on the sign of ln
µ

pr

(1−p)(1−β
n)

¶
. If this is negative, s∗i < 0

is not a best response. In this case, both agents choose zero investment. Alternatively, if

ln

µ
pr

(1−p)(1−β
n)

¶
> 0, the equilibrium investment level is given by the above expression. Thus

the Nash equilibrium can be characterized as follows:

�(GA) =

 (s∗1, s
∗
2) if ln

³
pr

(1−p)(1−β
n
)

´
≥ 0,

(0, 0) otherwise.

5.3 CEL Rule

The following two lemmas derive agent i’s best response correspondence under the CEL rule.

The first, Lemma 11 constructs the three possible candidates for optimum.

Lemma 11 The maximizer of UL
i (si, sj) for si ≤ 1−β

1+β
sj is

s1i (sj) = median

½
0,
1− β

1 + β
sj, s

1
i,u (sj)

¾
where

s1i,u (sj) =
1

(1 + r) ai
ln

µ
pr

1− p

¶
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is the unconstrained maximizer. The maximizer of UL
i (si, sj) for

1−β
1+β

sj ≤ si ≤ 1+β
1−βsj is

s2i (sj) = median

½
1− β

1 + β
sj,
1 + β

1− β
sj, s

2
i,u (sj)

¾
where

s2i,u (sj) =
2

ai (1− β + 2r)
ln

µ
2pr

(1− p) (1− β)

¶
− (1− β)

(1− β + 2r)
sj

is the unconstrained maximizer. The maximizer of UL
i (si, sj) for si ≥ 1+β

1−βsj is

s3i (sj) = max

½
1 + β

1− β
sj, s

3
i,u (sj)

¾
.

where

s3i,u (sj) =
1

ai (1 + r − β)
ln

µ
pr

(1− p) (1− β)

¶
+

β

(1 + r − β)
sj

is the unconstrained maximizer.

Proof. First assume si ≤ 1−β
1+β

sj. Then UL
i (si, sj) = −pe−airsi − (1 − p)eaisi . The first

derivative is
∂UL

i (si, s−i)
∂si

= paie
aisi − aie

aisi + praie
−raisi .

The second derivative is

∂2UL
i (si, s−i)
∂s2i

= pa2i e
aisi − a2i e

aisi − pr2a2i e
−raisi = − (1− p) a2i e

aisi − pr2a2i e
−raisi < 0.

Equating the first derivative to zero, we obtain the unconstrained maximizer

s1i,u (sj) =
1

(1 + r) ai
ln

µ
pr

1− p

¶
.

(Note that this amount is independent of sj.) Therefore, the maximizer s1i of U
L
i in the

interval [0, 1−β
1+β

sj] is s1i (sj) .

Now assume 1−β
1+β

sj ≤ si ≤ 1+β
1−βsj . Then UL

i (si, sj) = −pe−airsi − (1− p)eai
1−β
2
(si+sj). The

first derivative is

∂UL
i (si, s−i)
∂si

= praie
−raisi +

1

2
(1− p) (β − 1)aie−ai(si+sj)( 12β− 1

2)

and the second derivative is

∂2UL
i (si, s−i)
∂s2i

= −1
4
a2i

µ
(β − 1)2 (1− p) exp

µ
1

2
aisi +

1

2
aisj − 1

2
βaisi − 1

2
βaisj

¶
+ 4pr2e−raisi

¶
< 0.
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0,0

S21,u

S31,u

S11,u

s2

s1

Figure 5: A typical best response correspondence under CEL.

Equating the first derivative to zero, we obtain the unconstrained maximizer

s2i,u (sj) =
2

ai (1− β + 2r)
ln

µ
2pr

(1− p) (1− β)

¶
− (1− β)

(1− β + 2r)
sj.

Therefore, the maximizer s2i of U
A
i in the interval [

1−β
1+β

sj,
1+β
1−βsj] is s

2
i (sj) .

For the third case, assume si ≥ 1+β
1−βsj. Then U

L
i (si, sj) = −pe−airsi−(1−p)eai(1−β)si−aiβsj .

The first derivative is

∂UL
i (si, s−i)
∂si

= − (1− p) (1− β) ai exp (−aisi (β − 1)− βaisj) + praie
−raisi

and the second derivative is

∂2UL
i (si, s−i)
∂s2i

= − (1− p) (1− β)2 a2i exp (−aisi (β − 1)− βaisj)− pr2a2i e
−raisi < 0.

Equating the first derivative to zero, we obtain the unconstrained maximizer

s3i,u (sj) =
1

ai (1 + r − β)
ln

µ
pr

(1− p) (1− β)

¶
+

β

(1 + r − β)
sj.

Therefore, the maximizer s3i of U
A
i in the interval [

1+β
1−βsj,∞) is s3i (sj) .

The following lemma characterizes agent i’s best response function. See Figure 5 for a

typical configuration.
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Lemma 12 For each set of parameter values, there are K1,K2 ∈ [0,∞] such that K1 ≤ K2

and

BRi (sj) =


s3i,u (sj) if 0 ≤ sj < K1,

s2i (sj) if K1 ≤ sj < K2

{s2i (sj) , s1i (sj)} if sj = K2,

s1i (sj) if K2 < sj.

Also, K2 >
1+β

(1−β)(1+r)ai ln
³

pr
1−p
´
.

Proof. First note that for sj = 0,we have s1i,u (0) =
1

(1+r)ai
ln
³

pr
1−p
´
, s2i,u (0) =

2
ai(1−β+2r) ln

³
2pr

(1−p)(1−β)
´
,

and s3i,u (0) =
1

ai(1+r−β) ln
³

pr
(1−p)(1−β)

´
.Thus, s2i,u (0) > s3i,u (0) > s1i,u (0) . There are several

cases.

Case 1: 2pr
(1−p)(1−β) ≤ 1. Then, 0 ≥ s2i,u (0) > s3i,u (0) > s1i,u (0) . Since s2i,u has negative

slope, s2i (sj) =
1−β
1+β

sj for all sj. Similarly, since the slope of s3i,u is
β

(1+r−β) <
1+β
1−β , we have

s3i (sj) =
1+β
1−βsj for all sj. Finally, since s

1
i,u is a constant function, s

1
i,u (sj) < 0, for all sj

which implies s1i (sj) = 0 for all sj. Thus, BRi (sj) = 0 for all sj. Choosing K1 = 0 and

K2 =∞ gives the desired form.

Case 2: 2pr
(1−p)(1−β) > 1, pr

(1−p)(1−β) ≤ 1, and ln pr
(1−p)(1−β) + ln(1 + β) ≤ 0. Then, s2i,u (0) >

0 ≥ s3i,u (0) > s1i,u (0) . Thus BRi (0) = 0. First note that, for higher sj, s1i (sj) is a better

response than s2i (sj) . This is because U
L
i (s

1
i (0)) = UL

i (s
2
i (0)) , U

L
i (s

1
i (.)) is constant and

UL
i (s

2
i (.)) is decreasing in sj. Therefore, for sj > 0, candidate for best response are s1i (sj)

(which is a constant function and thus, gives the same payoff) and s3i (sj) =
1+β
1−βsj. Now note

that the derivative of UL
i evaluated at si =

1+β
1−βsj with respect to sj is positive if and only if

sj < (1−β) ln
pr

(1−p)(1−β)+ln(1+β)
ai(1+r+βr−β) . Due to our assumption ln pr

(1−p)(1−β)+ln(1+β) ≤ 0 for Case 2,
the right hand side of this inequality is nonpositive. Therefore, following si =

1+β
1−βsj decreases

agent i’s payoff while choosing si = 0 keeps it constant. Thus in this case, BRi (sj) = 0 for

all sj. Choosing K1 = 0 and K2 =∞ gives the desired form.

Case 3: 2pr
(1−p)(1−β) > 1,

pr
(1−p)(1−β) ≤ 1, and ln pr

(1−p)(1−β) + ln(1 + β) > 0. Then, s2i,u (0) > 0 ≥
s3i,u (0) > s1i,u (0) . Thus BRi (0) = 0. Now the derivative of UL

i evaluated at si =
1+β
1−βsj with

respect to sj is positive if and only if sj < (1− β)
ln pr

(1−p)(1−β)+ln(1+β)
ai(1+r+βr−β) . Due to our assumption

ln pr
(1−p)(1−β) + ln(1 + β) > 0 for Case 3, the right hand side of this inequality is positive.

Therefore, for sj < (1− β)
ln pr

(1−p)(1−β)+ln(1+β)
ai(1+r+βr−β) , following si =

1+β
1−βsj increases agent i’s payoff

while choosing si = 0 keeps it constant. For higher sj, the payoff from si =
1+β
1−βsj starts
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to decrease and there is a critical value K2 at which UL
i (s

2
i (K2)) = UL

i (s
1
i (K2)) . Thus for

0 < sj < K2, BRi (sj) = s2i (sj); at sj = K2, BRi (sj) = {s2i (sj) , s1i (sj)} ; and at sj > K2,

BRi (sj) = s1i (sj) .

Case 4: pr
(1−p)(1−β) > 1. Then, s2i,u (0) > s3i,u (0) > s1i (0) ≥ 0. Let s∗j solve s3i (sj) = 1+β

1−βsj.

(This equality has a solution since the slope of s3i is
β

(1+r−β) <
1+β
1−β .) Let s

∗∗
j solve s2i (sj) =

1+β
1−βsj. (This equality has a solution since s

2
i is downward sloping.) We then have s

∗
j < s∗∗j .

Now BRi (0) = s3i,u (0) and UL
i

¡
s3i,u (.)

¢
is increasing in sj (while UL

i (s
1
i (.)) is constant).

Also, for sj ∈ [0, s∗j ], s2i (sj) = 1+β
1−β . Thus, on this interval, BRi (sj) = s3i,u (sj). In the interval

[s∗j , s
∗∗
j ], s

2
i (sj) = s3i (sj) =

1+β
1−β . Note that the payoff from following

1+β
1−β is increasing in sj as

long as sj ≤ s∗∗∗j = (1− β)
ln pr

(1−p)(1−β)+ln(1+β)
ai(1+r+βr−β) . Now, s∗j < s∗∗∗j . Thus, in the interval [s∗j , s

∗∗∗
j ],

BRi (sj) =
1+β
1−β . As sj increases beyond s

∗∗∗
j , payoff from 1+β

1−β starts to decrease whereas payoff

from s1i (sj) is constant. Let K2 be the value of sj at which UL
i (s

2
i (sj)) = UL

i (s
1
i (sj)) . Then,

in the interval [s∗∗∗j ,K2), BRi (sj) = s2i (sj) . Also, BRi (K2) = {s2i (K2) , s
1
i (K2)} and in the

interval (K2,∞), BRi (sj) = s1i (sj) . This gives us the desired form.

Proof. (Proposition 4) Let s∗ be a Nash equilibrium of the investment game.

First assume that BRi

¡
s∗j
¢
= s2i

¡
s∗j
¢
for some i ∈ N. Then, s2i

¡
s∗j
¢
= s2i,u

¡
s∗j
¢
(since oth-

erwise, s2i
¡
s∗j
¢
= 1+β

1−βs
∗
j and thus, s

∗
j =

1−β
1+β

s∗i , but then by Lemma 12,K2 >
1+β

(1−β)(1+r)aj ln
³

pr
1−p
´

implies that s∗j can not be a best response). This implies BRj (s
∗
i ) = s2j,u (s

∗
i ) . Solving the

system

s∗i =
2

ai (1− β + 2r)
ln

µ
2pr

(1− p) (1− β)

¶
− (1− β)

(1− β + 2r)
s∗j

s∗j =
2

aj (1− β + 2r)
ln

µ
2pr

(1− p) (1− β)

¶
− (1− β)

(1− β + 2r)
s∗i

we obtain for both i ∈ N,

s∗i =
(2r − β + 1)

2r (r − β + 1)

µ
1

ai
− (1− β)

(1− β + 2r)

1

aj

¶
ln

µ
2pr

(1− p) (1− β)

¶
.

Now assume that BRi

¡
s∗j
¢
= s1i

¡
s∗j
¢
. Then BRj (s

∗
i ) = s3j (s

∗
i ) . If ln

³
pr
1−p
´
> 0, s1i

¡
s∗j
¢
=

s∗i =
1

ai(1+r)
ln
³

pr
1−p
´
. Since s3j (s

∗
i ) =

1
aj(1+r−β) ln

³
pr

(1−p)(1−β)
´
+ β

(1+r−β)s
∗
i , we obtain

s∗j =
1

aj (1 + r − β)
ln

µ
pr

(1− p) (1− β)

¶
+

β

(1 + r − β)

1

ai (1 + r)
ln

µ
pr

1− p

¶
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Alternatively if ln
³

pr
1−p
´
< 0, s1i

¡
s∗j
¢
= s∗i = 0. This implies

s∗j =
1

aj (1 + r − β)
ln

µ
pr

(1− p) (1− β)

¶
.
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