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Abstract
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1 Introduction

This paper investigates whether the market price of risk and the market price of uncertainty

are significantly positive and whether they predict the time-series and cross-sectional vari-

ation in stock returns. Although the literature has so far shown how uncertainty impacts

optimal allocation decisions and asset prices, the results have been provided based on a

theoretical model.1 Earlier studies do not pay attention to empirical testing of whether the

exposures of equity portfolios and individual stocks to uncertainty factors predict their fu-

ture returns. We extend the original intertemporal capital asset pricing model (ICAPM) of

Merton (1973) to propose a conditional ICAPM with time-varying market risk and economic

uncertainty. According to our model, the premium on equity is composed of two separate

terms; the first term compensates for the standard market risk and the second term represents

additional premium for variance risk. We use the conditional ICAPM to test whether the

time-varying conditional covariances of equity returns with market and uncertainty factors

predict the time-series and cross-sectional variation in future stock returns.

In this paper, economic uncertainty is proxied by the variance risk premia in the U.S.

equity market. Following Britten-Jones and Neuberger (2000), Jiang and Tian (2005), and

Carr and Wu (2009), we define the variance risk premium (VRP) as the difference between

expected variance under the risk-neutral measure and expected variance under the objective

measure.2 We generate several proxies for financial and economic uncertainty and then

compute the correlations between uncertainty variables and VRP. The first set of measures

can be viewed as macroeconomic uncertainty proxied by the conditional variance of the U.S.

1Although formal understanding of uncertainty and uncertainty aversion is poor, there exists a definition
of uncertainty aversion originally introduced by Schmeidler (1989) and Epstein (1999). In recent studies,
uncertainty aversion is defined for a large class of preferences and in different economic settings by Epstein
and Wang (1994), Epstein and Zhang (2001), Chen and Epstein (2002), Klibanoff, Marinacci, and Muk-
erji (2005), Maccheroni, Marinacci, and Rustichini (2006), and Ju and Miao (2012). In addition to these
theoretical papers, Ellsberg’s (1961) experimental evidence demonstrates that the distinction between risk
and uncertainty is meaningful empirically because people prefer to act on known rather than unknown or
ambiguous probabilities.

2Other studies (e.g., Rosenberg and Engle (2002), Bakshi and Madan (2006), Bollerslev, Gibson, and
Zhou (2011), and Bekaert, Hoerova, and Duca (2012)) interpret the difference between the implied and
expected volatilities as an indicator of the representative agent’s risk aversion. Bollerslev, Tauchen, and
Zhou (2009) and Drechsler and Yaron (2011) relate the variance risk premia to economic uncertainty risk.
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output growth and the conditional variance of the Chicago Fed National Activity Index

(CFNAI). The second set of uncertainty measures is based on the extreme downside risk

of financial institutions obtained from the left tail of the time-series and cross-sectional

distribution of financial firms’ returns. The third uncertainty variable is related to the

health of the financial sector proxied by the credit default swap (CDS) index. The last

uncertainty variable is based on the aggregate measure of investors’ disagreement about

individual stocks trading at NYSE, AMEX, and NASDAQ. We find that the variance risk

premium is strongly and positively correlated with all measures of uncertainty considered in

the paper. Our results indicate that VRP can be viewed as a sound proxy for financial and

economic uncertainty.3

Anderson, Ghysels, and Juergens (2009) introduce a model in which the volatility, skew-

ness and higher order moments of all returns are known exactly, whereas there is uncertainty

about mean returns. In other words, asset returns are uncertain only because mean returns

are not known. In their model, investors’ uncertainty in mean returns is defined as the

dispersion of predictions of mean market returns obtained from the forecasts of aggregate

corporate profits. They find that the price of uncertainty is significantly positive and ex-

plains the cross-sectional variation in stock returns. Bekaert, Engstrom, and Xing (2009)

investigate the relative importance of economic uncertainty and changes in risk aversion in

the determination of equity prices. Different from Knightian uncertainty or uncertainty orig-

inated from disagreement of professional forecasters, Bekaert, Engstrom, and Xing (2009)

focus on economic uncertainty proxied by the conditional volatility of dividend growth, and

find that both the conditional volatility of cash flow growth and time-varying risk aversion

are important determinants of equity returns.

Different from the aforementioned studies, we propose a conditional asset pricing model

in which economic uncertainty (proxied by VRP) plays a significant role along with the

standard market risk. After introducing a two-factor model with risk and uncertainty, we

3Knight (1921) draws a distinction between risk and true uncertainty and argues that uncertainty is more
common in decision-making process. Knight (1921) points out that risk occurs where the future is unknown,
but the probability of all possible outcomes is known. Uncertainty occurs where the probability distribution
is itself unknown. We use the variance risk premium as a proxy for economic uncertainty, which is different
from Knightian uncertainty.
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investigate the significance of risk-return and uncertainty-return coefficients using the time-

series and cross-sectional data. Our empirical analyses are based on the size, book-to-market,

and industry portfolios as well as individual stocks. We first use the dynamic conditional

correlation (DCC) model of Engle (2002) to estimate equity portfolios’ (individual stocks’)

conditional covariances with the market portfolio and then test whether the conditional

covariances predict future returns on equity portfolios (individual stocks). We find the risk-

return coefficients to be positive and highly significant, implying a strongly positive link

between expected return and market risk. Similarly, we use the DCC model to estimate

equity portfolios’ (individual stocks’) conditional covariances with the variance risk premia

and then test whether the conditional covariances with VRP predict future returns on eq-

uity portfolios (individual stocks). The results indicate a significantly positive market price

of uncertainty. Equity portfolios (individual stocks) that are highly correlated with uncer-

tainty (proxied by VRP) carry a significant premium relative to portfolios (stocks) that are

uncorrelated or minimally correlated with VRP.

We also examine the empirical validity of the conditional asset pricing model by test-

ing the hypothesis that the conditional alphas on the size, book-to-market, and industry

portfolios are jointly zero. The test statistics fail to reject the null hypothesis, indicating

that the two-factor model explains the time-series and cross-sectional variation in equity

portfolios. Finally, we investigate whether the model explains the return spreads between

the high-return (long) and low-return (short) equity portfolios (Small-Big for the size port-

folios; Value-Growth for the book-to-market portfolios; and HiTec-Telcm for the industry

portfolios). The results from testing the equality of conditional alphas for high-return and

low-return portfolios provide no evidence for a significant alpha for Small-Big, Value-Growth,

and HiTec-Telcm arbitrage portfolios, indicating that the two-factor model proposed in the

paper provides both statistical and economic success in explaining stock market anomalies.

Overall, the DCC-based conditional covariances capture the time-series and cross-sectional

variation in returns on size, book-to-market, and industry portfolios because the essential

tests of the model are passed: (i) significantly positive risk-return and uncertainty-return

tradeoffs; (ii) the conditional alphas are jointly zero; and (iii) the conditional alphas for
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high-return and low-return portfolios are not statistically different from each other.4 These

results are robust to using an alternative specification of the time-varying conditional covari-

ances with an asymmetric GARCH model, using a larger cross-section of equity portfolios

in asset pricing tests, and after controlling for a wide variety of macroeconomic variables,

market illiquidity, and credit risk.

Finally, we investigate the cross-sectional asset pricing performance of our model based

on the 25 and 100 size and book-to-market portfolios. Using the long-short equity portfolios

and the Fama and MacBeth (1973) regressions, we test the significance of a cross-sectional

relation between expected returns on equity portfolios and the portfolios’ conditional covari-

ances (or betas) with VRP. Quintile portfolios are formed by sorting the 25 and 100 Size/BM

portfolios based on their VRP-beta. The results indicate that the equity portfolios in highest

VRP-beta quintile generate 6 to 8 percent more annual raw returns and alphas compared

to the equity portfolios in the lowest VRP-beta quintile. These economically and statisti-

cally significant return differences are also confirmed by the Fama-MacBeth cross-sectional

regressions, which produce positive and significant average slope coefficients on VRP-beta.

The rest of the paper is organized as follows. Section 2 defines the variance risk premium

and provides its empirical measurement. Section 3 presents the conditional asset pricing

model with risk and uncertainty. Section 4 describes the data. Section 5 outlines the esti-

mation methodology. Section 6 presents the empirical results. Section 7 provides a battery

of robustness checks. Section 8 investigates the cross-sectional asset pricing performance of

our model. Section 9 concludes the paper.

2 Variance Risk Premium and Empirical Measurement

The central empirical variable of this paper, as a proxy for economic uncertainty, is the

market variance risk premium (VRP)—which is not directly observable but can be esti-

4Alternatively, our empirical result on VRP may be interpreted as compensating for the rare disaster risk
(Gabaix, 2011), jump risk (Todorov, 2010; Drechsler and Yaron, 2011), or tail risk (Bollerslev and Todorov,
2011; Kelly, 2011). Alternatively, VRP can be generated from a habit-formation model with sophisticated
consumption dynamics (Bekaert and Engstrom, 2010). The finding may also be related to the expected
business conditions (Campbell and Diebold, 2009) and its cross-sectional implications for stock returns
(Goetzmann, Watanabe, and Watanabe, 2009).
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mated from the difference between model-free option-implied variance and the conditional

expectation of realized variance.

2.1 Variance Risk Premium: Definition and Measurement

In order to define the model-free implied variance, let Ct(T,K) denote the price of a European

call option maturing at time T with strike price K, and B(t, T ) denote the price of a time

t zero-coupon bond maturing at time T . As shown by Carr and Madan (1998) and Britten-

Jones and Neuberger (2000), among others, the market’s risk-neutral Q expectation of the

return variance σ2
t+1 conditional on the information set Ωt, or the implied variance IVt at

time-t, can be expressed in a “model-free” fashion as a portfolio of European calls,

IVt ≡ EQ
[

σ2
t+1|Ωt

]

= 2

∫ ∞

0

Ct

(

t+ 1, K
B(t,t+1)

)

− Ct (t,K)

K2
dK, (1)

which relies on an ever increasing number of calls with strikes spanning from zero to infinity.5

This equation follows directly from the classical result in Breeden and Litzenberger (1978),

that the second derivative of the option call price with respect to strike equals the risk-

neutral density, such that all risk neutral moments payoff can be replicated by the basic

option prices (Bakshi and Madan, 2000).

In order to define the actual return variance, let pt denote the logarithmic price of the

asset. The realized variance over the discrete t to t + 1 time interval can be measured in a

“model-free” fashion by

RVt+1 ≡
n

∑

j=1

[

pt+ j

n

− pt+ j−1

n

]2

−→ σ2
t+1, (2)

where the convergence relies on n → ∞; i.e., an increasing number of within period price

observations. As demonstrated in the literature (see, e.g., Andersen, Bollerslev, Diebold,

and Ebens, 2001; Barndorff-Nielsen and Shephard, 2002), this “model-free” realized vari-

ance measure based on high-frequency intraday data offers a much more accurate ex-post

5Such a characterization is accurate up to the second order when there are jumps in the underlying asset
(Jiang and Tian, 2005; Carr and Wu, 2009), though Martin (2011) has refined the above formulation to
make it robust to jumps.
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observation of the true (unobserved) return variance than the traditional ones based on daily

or coarser frequency returns.

Variance risk premium (VRP) at time t is defined as the difference between the ex-ante

risk-neutral expectation and the objective or statistical expectation at time t of the return

variance at time t+ 1,

V RPt ≡ EQ
[

σ2
t+1|Ωt

]

− EP
[

σ2
t+1|Ωt

]

, (3)

which is not directly observable in practice.6 To construct an empirical proxy for such a

VRP concept, one needs to estimate various reduced-form counterparts of the risk neutral

and physical expectations. In practice, the risk-neutral expectation EQ
[

σ2
t+1|Ωt

]

is typically

replaced by the CBOE implied variance (VIX2/12) and the true variance σ2
t+1 is replaced by

realized variance RVt+1.

To estimate the objective expectation, EP
[

σ2
t+1|Ωt

]

, we use a linear forecast of future

realized variance as RVt+1 = α + βIVt + γRVt + ǫt+1, with current implied and realized

variances. The model-free implied variance from options market is an informationally more

efficient forecast for future realized variance than the past realized variance (see, e.g., Jiang

and Tian, 2005, among others), while realized variance based on high-frequency data also pro-

vides additional power in forecasting future realized variance (Andersen, Bollerslev, Diebold,

and Labys, 2003). Therefore, a joint forecast model with one lag of implied variance and

one lag of realized variance seems to capture the most forecasting power based on time-t

available information (Drechsler and Yaron, 2011).

3 Conditional ICAPM with Economic Uncertainty

The time-varying conditional version of the Sharpe (1964) and Lintner (1965) capital asset

pricing model (CAPM) relates the conditionally expected excess returns on risky assets to

6The difference between option implied and GARCH type filtered volatilities has been associated in
existing literature with notions of aggregate market risk aversion (Rosenberg and Engle, 2002; Bakshi and
Madan, 2006; Bollerslev, Gibson, and Zhou, 2011).
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the conditionally expected excess return on the market portfolio:

E [Ri,t+1|Ωt] =
E [Rm,t+1|Ωt]

var [Rm,t+1|Ωt]
· cov [Ri,t+1, Rm,t+1|Ωt] , (4)

where Ri,t+1 and Rm,t+1 are, respectively, the return on risky asset i and the market portfolio

m in excess of the risk-free interest rate, Ωt denotes the information set at time t that

investors use to form expectations about future returns, E [Ri,t+1|Ωt] and E [Rm,t+1|Ωt] are

the expected excess return on the risky asset and the market portfolio at time t+1 conditional

on the information set at time t, var [Rm,t+1|Ωt] is the time-t expected conditional variance of

excess returns on the market at time t+ 1, and cov [Ri,t+1, Rm,t+1|Ωt] is the time-t expected

conditional covariance between excess returns on the risky asset and the market portfolio at

time t+ 1.

In equation (4), the ratio of cov [Ri,t+1, Rm,t+1|Ωt] to var [Rm,t+1|Ωt] is the asset’s time-

t expected conditional beta E [βi,t+1|Ωt] =
cov[Ri,t+1,Rm,t+1|Ωt]

var[Rm,t+1|Ωt]
, and the ratio E[Rm,t+1|Ωt]

var[Rm,t+1|Ωt]

is known as the reward-to-risk ratio that represents the compensation the investor must

receive for a unit increase in the conditional variance of the market. As pointed out by

Merton (1980), the reward-to-risk ratio can also be interpreted as the relative risk aversion

coefficient.

Merton (1973) intertemporal capital asset pricing model (ICAPM) implies the following

equilibrium relation between expected return and risk for any risky asset i:

µi = A · σim + B · σix, (5)

where µi denotes the unconditional expected excess return on risky asset i, σim denotes the

unconditional covariance between the excess returns on the risky asset i and the market port-

folio m, and σix denotes a (1×k) row of unconditional covariances between the excess returns

on the risky asset i and the k-dimensional state variables x. A is the relative risk aversion of

market investors and B measures the market’s aggregate reaction to shifts in a k-dimensional

state vector that governs the stochastic investment opportunity set. Equation (5) states that

in equilibrium, investors are compensated in terms of expected return for bearing market

risk and for bearing the risk of unfavorable shifts in the investment opportunity set.

7



In the original Merton (1973) model, the parameters of expected returns and covariances

are all interpreted as constant but the ability to model time variation in expected returns

and covariances makes it natural to include time-varying parameters directly in the analysis

(see Bali and Engle, 2010). In principle, if the covariances are stochastic, they would repre-

sent additional sources of variation in the investment opportunity set and potential hedging

demand terms. In this paper, we provide a time-series and cross-sectional investigation of

the conditional ICAPM with time-varying covariances:

E [Ri,t+1|Ωt] = A · cov [Ri,t+1, Rm,t+1|Ωt] + B · cov [Ri,t+1, Xt+1|Ωt] , (6)

where A is the reward-to-risk ratio and interpreted as the Arrow-Pratt relative risk-aversion

coefficient. The difference between the conditional CAPM and the conditional ICAPM is the

intertemporal hedging demand component, B · cov [Ri,t+1, Xt+1|Ωt] , in equation (6). Note

that cov [Ri,t+1, Xt+1|Ωt] measures the time-t expected conditional covariance between the

excess returns on risky asset i and a state variable X. The parameter B represents the price

of risk for the state variable X.

The unconditional (static) CAPM is built on an implausible assumption that investors

care only about the mean and variance of single-period portfolio returns. However, in prac-

tice, investors make decisions for multiple periods and they revise their portfolio and risk

management decisions over time based on the expectations about future investment oppor-

tunities. In Merton’s (1973) ICAPM, investors are concerned not only with the terminal

wealth that their portfolio produces, but also with the investment and consumption oppor-

tunities that they will have in the future. Hence, when choosing a portfolio at time t, ICAPM

investors consider how their wealth at time t+1 might vary with future state variables. This

implies that like CAPM investors, ICAPM investors prefer high expected return and low

return variance, but they are also concerned with the covariances of portfolio returns with

state variables that affect future investment opportunities.

Fama (1996) point out that Merton’s (1973) ICAPM generalizes the logic of the CAPM.

Since ICAPM investors are risk averse, they are concerned with the mean and variance of

their portfolio return. ICAPM investors are, however, also concerned with hedging more
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specific state-variable (consumption-investment) risks. As a result, their optimal portfolios

are multifactor efficient, i.e., ICAPM investors have the largest possible expected returns,

given their return variances and the covariances of their returns with the relevant state

variables.

Bloom (2009) develops a structural model with time-varying volatility to investigate the

effects of economic uncertainty shocks. His empirical analyses indicate that a macroeconomic

uncertainty shock produces a sharp decline and rebound in aggregate output and employment

because higher uncertainty causes firms to temporarily pause their investment and hiring. He

finds that productivity growth also falls because the drop in investment and hiring reduces

the rate of reallocation from low to high productivity firms. Overall, his results provide

evidence that economic uncertainty shocks generate short sharp recessions and recoveries.

Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry (2012) show that recessions appear

in periods of significantly higher economic uncertainty, suggesting an uncertainty approach

to modeling business cycles. Bloom, Bond, and Van Reenen (2007) provide a link between

economic uncertainty and investment dynamics. Stock and Watson (2012) indicate that the

decline in aggregate output and employment during the recent crisis period are driven by

financial and economic uncertainty shocks. Allen, Bali, and Tang (2012) show that downside

risk in the financial sector predicts future economic downturns, linking financial uncertainty

to future investment opportunity set.

Hence, we assume that economic uncertainty is a relevant state variable that affects

investors’ expectations about future consumption and investment opportunities. We will

also show that the variance risk premia significantly covary with alternative measures of

financial and economic uncertainty factors. Hence, the state variable Xt+1 in equation (6)

is proxied by VRP. Based on this two-factor conditional ICAPM, we investigate whether

the market price of risk and the market price of uncertainty are significantly positive and

whether they predict returns in a panel data setting:

E [Ri,t+1|Ωt] = A · cov [Ri,t+1, Rm,t+1|Ωt] + B · cov [Ri,t+1, V RPt+1|Ωt] , (7)

where the time-varying exposure of asset i to changes in the market portfolio is measured by
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the conditional covariance between the excess return on asset i and the excess return on the

aggregate stock market, denoted by cov [Ri,t+1, Rm,t+1|Ωt], and the time-varying exposure of

asset i to economic uncertainty is proxied by the conditional covariance between the excess

return on asset i and the variance risk premia, denoted by cov [Ri,t+1, V RPt+1|Ωt].
7

Maio and Santa-Clara (2012) study the restrictions associated with the ICAPM for a

time-series of the market return and a cross-section of portfolios. By using Merton’s ICAPM,

they identify three main conditions for a multifactor model to be justifiable by the ICAPM.

First, the candidates for ICAPM state variables must predict the first or second moments

of stock market returns. Second, and most importantly, the state variables should forecast

expected market return with the same sign as its innovation prices the cross-section. Specif-

ically, if a given state variable forecasts positive expected returns, it should earn a positive

risk price in the cross-sectional test of the respective multifactor model. The third restriction

associated with the ICAPM is that the market price of risk estimated from the cross-sectional

tests must be economically plausible as an estimate of the relative risk aversion coefficient.

As shown by Bollerslev, Tauchen, and Zhou (2009), the variance risk premia (VRP) pre-

dicts future returns on the stock market portfolio. Specifically, there is a significantly positive

intertemporal relation between VRP and expected market returns. As will be presented in

this paper, VRP earns a positive risk price in the cross-sectional test of the two-factor con-

ditional ICAPM model. Finally, the market price of VRP from the cross-sectional tests

provides economically sensible estimates of relative risk aversion coefficient. Hence, the

conditional ICAPM introduced in the paper meets three conditions proposed by Maio and

Santa-Clara (2012).

7In the internet appendix (Section A), we show that the two-factor conditional ICAPM specification
in equation (7) can be obtained in a consumption-based asset pricing model with time-varying volatility
of the consumption growth and the volatility uncertainty in the consumption growth process (e.g., as in
Bollerslev, Tauchen, and Zhou, 2009). Alternatively, we can motivate such a risk-return and uncertainty-
return specification using the habit formation model of Campbell and Cochrane (1999), similar to the
approach taken by Bekaert, Engstrom, and Xing (2009) and Bekaert, Hoerova, and Duca (2012).
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3.1 Variance Risk Premia and Economic Uncertainty Measures

For the option-implied variance of the S&P500 market return, we use the end-of-month

Chicago Board of Options Exchange (CBOE) volatility index on a monthly basis (VIX2/12).

Following earlier studies, the daily realized variance for the S&P500 index is calculated as

the summation of the 78 intra-day five-minute squared log returns from 9:30am to 4:00pm

including the close-to-open interval. Along these lines, we compute the monthly realized

variance for the S&P500 index as the summation of five-minute squared log returns in a

month. As shown in equation (3), variance risk premium (VRP) at time t is defined as

the difference between the ex-ante risk-neutral expectation and the objective or statistical

expectation of the return variance over the [t, t + 1] time interval. The monthly VRP data

are available from January 1990 to December 2010.

To give a visual illustration, Figure 1 plots the monthly time series of variance risk

premium (VRP), implied variance, and expected variance. The VRP proxy is moderately

high around the 1990 and 2001 economic recessions but much higher during the 2008 financial

crisis and to a lessor degree around 1997-1998 Asia-Russia-LTCM crisis. The variance spike

during October 2008 already surpasses the initial shock of the Great Depression in October

1929. The huge run-up of VRP in the fourth quarter of 2008 leads the equity market bottom

reached in March 2009. The sample mean of VRP is 18.75 (in percentages squared, monthly

basis), with a standard deviation of 22.15. Notice that the extraordinary skewness (3.81)

and kurtosis (27.46) signal a highly non-Gaussian process for VRP.

According to the conditional ICAPM specification in equation (7), VRP is viewed as a

proxy for uncertainty. To test whether VRP is in fact associated with alternative measures

of uncertainty, we generate some proxies for financial and economic uncertainty. We obtain

monthly values of the U.S. industrial production index from G.17 database of the Federal

Reserve Board and monthly values of the Chicago Fed National Activity Index (CFNAI) from

the Federal Reserve Bank of Chicago for the period January 1990 – December 2010.8 We

8The CFNAI is a monthly index that determines increases and decreases in economic activity and is
designed to assess overall economic activity and related inflationary pressure. It is a weighted average of
85 existing monthly indicators of national economic activity, and is constructed to have an average value of
zero and a standard deviation of one. Since economic activity tends toward a trend growth rate over time,
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use the GARCH(1,1) model of Bollerslev (1986) to estimate the conditional variance of the

growth rate of industrial production and the conditional variance of the CFNAI index. These

two measures can be viewed as macroeconomic uncertainty. The sample correlation between

VRP and economic uncertainty variables is positive and significant; sample correlation is

33.20% with the variance of output growth and 31.82% with the variance of CFNAI index.

Our second set of uncertainty measures is based on the downside risk of financial institu-

tions obtained from the left tail of the time-series and cross-sectional distribution of financial

firms’ returns. Specifically, we obtain monthly returns for financial firms (6000 ≤ SIC code

≤ 6999) for the sample period January 1990 to December 2010. Then, the 1% nonparametric

Value-at-Risk (VaR) measure in a given month is measured as the cut-off point for the lower

one percentile of the monthly returns on financial firms.9 For each month, we determine

the one percentile of the cross-section of returns on financial firms, and obtain an aggre-

gate 1% VaR measure of the financial system for the period 1990-2010. In addition to the

cross-sectional distribution, we use the time-series daily return distribution to estimate 1%

VaR of the financial system. For each month from January 1990 to December 2010, we first

determine the lowest daily returns on financial institutions over the past 1 to 12 months. The

catastrophic risk of financial institutions is then computed by taking the average of these

lowest daily returns obtained from alternative measurement windows. The estimation win-

dows are fixed at 1 to 12 months, and each fixed estimation window is updated on a monthly

basis. These two downside risk measures can be viewed as a proxy for uncertainty in the

financial sector. The sample correlations between VRP and financial uncertainty variables

are positive and significant: 47.37% with the cross-sectional VaR measure and 37.01% with

the time-series VaR measure.

The third uncertainty variable is related to the health of the financial sector proxied by the

credit default swap (CDS) index. We download the monthly CDS data from Bloomberg. For

the sample period January 2004 – December 2010, we obtain monthly CDS data for Bank of

a positive index reading corresponds to growth above trend and a negative index reading corresponds to
growth below trend.

9Assuming that we have 900 financial firms in month t, the nonparametric measure of 1% VaR is the 9th
lowest observation in the cross-section of monthly returns.
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America (BOA), Citigroup (CICN), Goldman Sachs (GS), JP Morgan (JPM), Morgan Stan-

ley (MS), Wells Fargo (WFC), and American Express (AXP). Then, we standardized all

CDS data to have zero mean and unit standard deviation. Finally, we formed the standard-

ized CDS index (EWCDS) based on the equal-weighted average of standardized CDS values

for the 7 major financial firms. For the common sample period 2004-2010, the correlation

between VRP and EWCDS is positive, 42.99%, and highly significant.

The last uncertainty variable is based on the aggregate measure of investors’ disagree-

ment about individual stocks trading at NYSE, AMEX, and NASDAQ. Following Diether,

Malloy, and Scherbina (2002), we use dispersion in analysts’ earnings forecasts as a proxy

for divergence of opinion. It is likely that investors partly form their expectations about a

particular stock based on the analysts’ earnings forecasts. If all analysts are in agreement

about expected returns, uncertainty is likely to be low. However, if analysts provide very

different estimates, investors are likely to be unclear about future returns, and uncertainty

is high. The sample correlation between VRP and the aggregate measure of dispersion is

about 14.92%. Overall, these results indicate that the variance risk premia is strongly and

positively correlated with all measures of uncertainty considered here. Hence, VRP can be

viewed as a sound proxy for financial and economic uncertainty.

4 Data

4.1 Equity Portfolios

We use the monthly excess returns on the value-weighted aggregate market portfolio and

the monthly excess returns on the 10 value-weighted size, book-to-market, and industry

portfolios. The aggregate market portfolio is represented by the value-weighted NYSE-

AMEX-NASDAQ index. Excess returns on portfolios are obtained by subtracting the returns

on the one-month Treasury bill from the raw returns on equity portfolios. The data are

obtained from Kenneth French’s online data library.10 We use the longest common sample

period available, from January 1990 to December 2010, yielding a total of 252 monthly

10http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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observations.

Table I of the internet appendix presents the monthly raw return and CAPM Alpha dif-

ferences between high-return (long) and low-return (short) equity portfolios. The results are

reported for the size, book-to-market (BM), and industry portfolios for the period January

1990 – December 2010.11 The OLS t-statistics are reported in parentheses. The Newey and

West (1987) t-statistics are given in square brackets.

For the ten size portfolios, “Small” (Decile 1) is the portfolio of stocks with the smallest

market capitalization and “Big” (Decile 10) is the portfolio of stocks with the biggest market

capitalization. For the 1990-2010 period, the average return difference between the Small and

Big portfolios is 0.40% per month with the OLS t-statistic of 1.22 and the Newey-West (1987)

t-statistic of 1.13, implying that small stocks on average do not generate higher returns than

big stocks. In addition to the average raw returns, Table I of the internet appendix presents

the intercept (CAPM alpha) from the regression of Small-Big portfolio return difference on

a constant and the excess market return. The CAPM Alpha (or abnormal return) for the

long-short size portfolio is 0.35% per month with the OLS t-statistic of 1.06 and the Newey-

West t-statistic of 0.98. This economically and statistically insignificant Alpha indicates that

the static CAPM does explain the size effect for the 1990-2010 period.

For the ten book-to-market portfolios, “Growth” is the portfolio of stocks with the lowest

book-to-market ratios and “Value” is the portfolio of stocks with the highest book-to-market

ratios. For the sample period January 1990 – December 2010, the average return difference

between the Value and Growth portfolios is economically and statistically insignificant; 0.29%

per month with the OLS t-statistic of 0.92 and the Newey-West t-statistic of 0.79, implying

that value stocks on average do not generate higher returns than growth stocks. Similar to

our findings for the size portfolios, the unconditional CAPM can explain the value premium

for the 1990-2010 period; the CAPM Alpha (or abnormal return) for the long-short book-to-

market portfolio is only 0.28% per month with the OLS t-statistic of 0.86 and the Newey-West

t-statistic of 0.71.

11Since the monthly data on variance risk premia (VRP) start in January 1990, our empirical analyses
with equity portfolios and VRP are based on the sample period January 1990 - December 2010.
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Interestingly, industry effects in the U.S. equity market are economically and statistically

strong over the past two decades, although size and value premiums are not. The average

raw and risk-adjusted return differences between the high-return and low-return industry

portfolios are significant for the sample period 1990-2010. The high-return and low-return

portfolios of 48 and 49 industries generate highly significant return differences, 30 and 38

industry portfolios generate marginally significant return differences, whereas the average

return differences and Alphas for the high-return and low-return portfolios of 10 and 17

industries are insignificant. Specifically, for 30-, 48- and 49-industry portfolios of Kenneth

French, “Coal” industry has the highest average monthly return, whereas “Other” industry

has the lowest return, yielding an average raw and risk-adjusted return differences of 1.54%

to 1.79% per month and statistically significant. The static CAPM cannot explain these

economically and statistically strong industry effects either.

Earlier studies starting with Fama and French (1992, 1993) provide evidence for the

significant size and value premiums for the post-1963 period. Some readers may find the

insignificant size and value premiums for the 1990-2010 period controversial. Hence, in

internet appendix (Section B), we examine the significance of size and book-to-market effects

for the longest sample period July 1926 – December 2010 and the subsample period July

1963 – December 2010. The results indicate significant raw return difference between the

Value and Growth portfolios for both sample periods and significant risk-adjusted return

difference (Alpha) only for the post-1963 period. Consistent with the findings of earlier

studies, we find significant raw return difference between the Small and Big stock portfolios

for the 1926-2010 period, which becomes very weak for the post-1963 period. The CAPM

Alpha (or abnormal return) for the long-short size portfolio is economically and statistically

insignificant for both sample periods.

5 Estimation Methodology

Following Bali (2008) and Bali and Engle (2010), our estimation approach proceeds in steps.

1) We take out any autoregressive elements in returns and VRP and estimate univariate
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GARCH models for all returns and VRP.

2) We construct standardized returns and compute bivariate DCC estimates of the cor-

relations between each portfolio and the market and between each portfolio and VRP

using the bivariate likelihood function.

3) We estimate the expected return equation as a panel with the conditional covariances

as regressors. The error covariance matrix specified as seemingly unrelated regression

(SUR). The panel estimation methodology with SUR takes into account heteroskedas-

ticity and autocorrelation as well as contemporaneous cross-correlations in the error

terms.

The following subsections provide details about the estimation of time-varying covariances

and the estimation of time-series and cross-sectional relation between expected returns and

risk and uncertainty.

5.1 Estimating Time-Varying Conditional Covariances

We estimate the conditional covariance between excess returns on equity portfolio i and

the market portfolio m based on the mean-reverting dynamic conditional correlation (DCC)

model:

Ri,t+1 = αi
0 + αi

1Ri,t + εi,t+1 (8)

Rm,t+1 = αm
0 + αm

1 Rm,t + εm,t+1 (9)

Et

[

ε2i,t+1

]

≡ σ2
i,t+1 = βi

0 + βi
1ε

2
i,t + βi

2σ
2
i,t (10)

Et

[

ε2m,t+1

]

≡ σ2
m,t+1 = βm

0 + βm
1 ε2m,t + βm

2 σ2
m,t (11)

Et [εi,t+1εm,t+1] ≡ σim,t+1 = ρim,t+1 · σi,t+1 · σm,t+1 (12)

ρim,t+1 =
qim,t+1√

qii,t+1 · qmm,t+1

, qim,t+1 = ρ̄im + a1 · (εi,t · εm,t − ρ̄im) + a2 · (qim,t − ρ̄im) (13)

whereRi,t+1 and Rm,t+1 denote the time (t+1) excess return on equity portfolio i and the mar-

ket portfolio m over a risk-free rate, respectively, and Et [·] denotes the expectation operator
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conditional on time t information. σ2
i,t+1 is the time-t expected conditional variance of Ri,t+1,

σ2
m,t+1 is the time-t expected conditional variance of Rm,t+1, and σim,t+1 is the time-t expected

conditional covariance between Ri,t+1 and Rm,t+1. ρim,t+1 = qim,t+1/
√
qii,t+1 · qmm,t+1 is the

time-t expected conditional correlation between Ri,t+1 and Rm,t+1, and ρ̄im is the uncondi-

tional correlation. To ease the parameter convergence, we use correlation targeting assuming

that the time-varying correlations mean reverts to the sample correlations ρ̄im.

We estimate the conditional covariance between each equity portfolio i and the variance

risk premia V RP , σi,V RP , using an analogous DCC model:

Ri,t+1 = αi
0 + αi

1Ri,t + εi,t+1 (14)

V RPt+1 = αV RP
0 + αV RP

1 V RPt + εV RP,t+1 (15)

Et

[

ε2i,t+1

]

≡ σ2
i,t+1 = βi

0 + βi
1ε

2
i,t + βi

2σ
2
i,t (16)

Et

[

ε2V RP,t+1

]

≡ σ2
V RP,t+1 = βV RP

0 + βV RP
1 ε2V RP,t + βV RP

2 σ2
V RP,t (17)

Et [εi,t+1εV RP,t+1] ≡ σi,V RP,t+1 = ρi,V RP,t+1 · σi,t+1 · σV RP,t+1 (18)

ρi,V RP,t+1 =
qi,V RP,t+1√

qii,t+1 · qV RP,t+1

,

qi,V RP,t+1 = ρ̄i,V RP + a1 · (εi,t · εV RP,t − ρ̄i,V RP ) + a2 · (qi,V RP,t − ρ̄i,V RP ) (19)

where σi,V RP,t+1 is the time-t expected conditional covariance between Ri,t+1 and V RPt+1.

ρi,V RP,t+1 is the time-t expected conditional correlation between Ri,t+1 and V RPt+1. We use

the same DCC model to estimate the conditional covariance between the market portfolio

m and the variance risk premia V RP , σm,V RP .12

We estimate the conditional covariances of each equity portfolio with the market portfolio

and with V RP using the maximum likelihood method described in the internet appendix

(Section C). Then, as discussed in the following section, we estimate the time-series and

12We assume that the excess returns on equity portfolios and the market portfolio as well as the variance
risk premia follow an autoregressive of order one, AR(1) process, given in equations (8), (9), and (15). At an
earlier stage of the study, we consider alternative specifications of the conditional mean. More specifically,
the excess returns are assumed to follow a moving average of order one, MA(1) process, ARMA(1,1) process,
and a constant. Our main findings are not sensitive to the choice of the conditional mean specification.
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cross-sectional relation between expected return and risk and uncertainty as a panel with

the conditional covariances as regressors.

As pointed out by earlier studies, estimating Multivariate GARCH-in-mean models with

time-varying conditional correlations is a difficult task, especially if the number of cross-

sections gets bigger. Early work on time-varying covariances in large dimensions was carried

out by Bollerslev (1990) in his constant correlation model, where the volatilities of each

asset were allowed to vary through time but the correlations were time invariant. Recently,

the DECO model of Engle and Kelly (2012) and the MacGyver estimation method of Engle

(2009) deal with the computation of correlations for a large number of assets with an as-

sumption that the correlation amongst assets changes through time but is constant across the

cross-section of assets. We should note that estimating time-varying correlations based on

a Multivariate GARCH model with a constant mean is easier than estimating time-varying

correlations based on a Multivariate GARCH-in-mean model with time-varying mean.

At an earlier stage of the study, we use 10 equity portfolios and estimate in one step the

time-varying conditional correlations as well as the parameters of time-varying conditional

mean in a Multivariate GARCH-in-mean framework. To ease the parameter convergence,

we use correlation targeting assuming that the time-varying correlations mean reverts to the

sample correlations. To reduce the overall time of maximizing the conditional log-likelihood,

we first estimate all pairs of bivariate GARCH-in-mean model and then use the median values

of A, B, a1 and a2 as starting values along with the bivariate GARCH-in-mean estimates of

variance parameters (β0, β1, β2). Even after going through these steps to increase the speed

of parameter convergence, it takes a long time to obtain the full set of parameters in the

Multivariate GARCH-in-mean model. Similar to the findings of Bali and Engle (2010), the

results from the one-step estimation of 10 equity portfolios turned out to be similar to those

obtained from the two-step estimation procedure described in Section 5.13

13Bali and Engle (2010) also estimate the risk aversion coefficient in two steps; first they obtain the
conditional covariances with DCC and then they use the covariance estimates in the panel regression with a
common slope coefficient. In this setting, since the covariance matrices implied by the DCC model are not
used in estimating risk premia or in computing their standard errors, a common worry in testing asset pricing
models is that time-varying covariances are measured with error. Using different samples, they show that
the significance of measurement errors in covariances is small. Hence, the one-step and two-step estimation
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5.2 Estimating Risk-Uncertainty-Return Tradeoff

Given the conditional covariances, we estimate the portfolio-specific intercepts and the com-

mon slope estimates from the following panel regression:

Ri,t+1 = αi + A · Covt (Ri,t+1, Rm,t+1) + B · Covt (Ri,t+1, V RPt+1) + εi,t+1 (20)

Rm,t+1 = αm + A · V art (Rm,t+1) + B · Covt (Rm,t+1, V RPt+1) + εm,t+1 (21)

where Covt (Ri,t+1, Rm,t+1) is the time-t expected conditional covariance between the ex-

cess return on portfolio i (Ri,t+1) and the excess return on the market portfolio (Rm,t+1),

Covt (Ri,t+1, V RPt+1) is the time-t expected conditional covariance between the excess re-

turn on portfolio i and the variance risk premia (V RPt+1), Covt (Rm,t+1, V RPt+1) is the

time-t expected conditional covariance between the excess return on the market portfolio m

and the variance risk premia (V RPt+1), and V art (Rm,t+1) is the time-t expected conditional

variance of excess returns on the market portfolio.

We estimate the system of equations in (20)-(21) using a weighted least square method

that allows us to place constraints on coefficients across equations. We compute the t-

statistics of the parameter estimates accounting for heteroskedasticity and autocorrelation

as well as contemporaneous cross-correlations in the errors from different equations. The es-

timation methodology can be regarded as an extension of the seemingly unrelated regression

(SUR) method, the details of which are in the internet appendix (Section D).

6 Empirical Results

In this section we first present results from the 10 decile portfolios of size, book-to-market,

and industry. Second, we discuss the economic significance of risk and uncertainty compen-

sations. Finally, we compare the relative performances of conditional CAPM and ICAPM

with both risk and uncertainty.

procedures generate similar slope coefficients and standard errors.
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6.1 Ten Decile Portfolios of Size, Book-to-Market, and Industry

The common slopes and the intercepts are estimated using the monthly excess returns on

the 10 value-weighted size, book-to-market, and industry portfolios for the sample period

January 1990 to December 2010. The aggregate stock market portfolio is measured by

the value-weighted CRSP index. Table 1 reports the common slope estimates (A,B), the

abnormal returns or conditional alphas for each equity portfolio (αi) and the market portfolio

(αm), and the t-statistics of the parameter estimates. The last two rows, respectively, show

the Wald statistics; Wald1 from testing the joint hypothesis H0 : α1 = ... = α10 = αm = 0,

and Wald2 from testing the equality of conditional alphas for high-return and low-return

portfolios (Small vs. Big; Value vs. Growth; and HiTec vs. Telcm). The p-values of Wald1

and Wald2 statistics are given in square brackets.

The risk aversion coefficient is estimated to be positive and highly significant for all equity

portfolios: A = 3.96 with the t-statistic of 3.12 for the size portfolios, A = 2.51 with the

t-statistic of 2.53 for the book-to-market portfolios, and A = 3.41 with the t-statistic of 2.35

for the industry portfolios.14 These results imply a positive and significant relation between

expected return and market risk.15 Consistent with the conditional ICAPM specification

in equation (7), the uncertainty aversion coefficient is also estimated to be positive and

highly significant for all equity portfolios: B = 0.0058 with the t-statistic of 2.97 for the

size portfolios, B = 0.0050 with the t-statistic of 2.27 for the book-to-market portfolios, and

B = 0.0060 with the t-statistic of 2.78 for the industry portfolios. These results indicate

a significantly positive market price of uncertainty in the aggregate stock market. Equity

portfolios with higher sensitivity to increases in the variance risk premia are expected to

generate higher returns next period.

One implication of the conditional asset pricing model in equation (7) is that the inter-

cepts (αi, αm) are not jointly different from zero assuming that the conditional covariances of

14Our risk aversion estimates ranging from 2.51 to 3.41 are very similar to the median level of risk aversion,
2.52, identified by Bekaert, Engstrom, and Xing (2009) in a different model.

15Although the literature is inconclusive on the direction and significance of a risk-return tradeoff, some
studies do provide evidence supporting a positive and significant relation between expected return and
risk (e.g., Bollerslev, Engle, and Wooldridge (1988), Ghysels, Santa-Clara, and Valkanov (2005), Guo and
Whitelaw (2006), Guo and Savickas (2006), Lundblad (2007), Bali (2008), and Bali and Engle (2010)).
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equity portfolios with the market portfolio and the variance risk premia have enough predic-

tive power for expected future returns. To examine the empirical validity of the conditional

asset pricing model, we test the joint hypothesis H0 : α1 = ... = α10 = αm = 0. As presented

in Table 1, the Wald1 statistics for the size, book-to-market, and industry portfolios are, re-

spectively, 16.74, 8.88, and 14.35 with the corresponding p-values of 0.12, 0.63, and 0.21. The

significantly positive risk and uncertainty aversion coefficients and the insignificant Wald1

statistics indicate that the two-factor model in equation (7) is empirically sound.

We also investigate whether the model explains the return spreads between Small and

Big; Value and Growth; and HiTec and Telcm portfolios. The last row in Table 1 reports

Wald2 statistics from testing the equality of conditional alphas for high-return and low-return

portfolios (H0 : α1 = α10). These intercepts capture the monthly abnormal returns on each

portfolio that cannot be explained by the conditional covariances with the market portfolio

and the variance risk premia.

The first column of Table 1 shows that the abnormal return on the small-stock portfolio

is α1 = 0.41% per month with a t-statistic of 0.94, whereas the abnormal return on the big-

stock portfolio is α10 = 0.01% per month with a t-statistic of 0.01. The Wald2 statistic from

testing the equality of alphas on the Small and Big portfolios is 1.56 with a p-value of 0.21,

indicating that there is no significant risk-adjusted return difference between the small-stock

and big-stock portfolios. The second column provides the conditional alphas on the Value

and Growth portfolios: α1 = 0.36% per month with a t-statistic of 0.90, and α10 = 0.82%

per month with a t-statistic of 1.90. The Wald2 statistic from testing H0 : α1 = α10 is

1.79 with a p-value of 0.18, implying that the conditional asset pricing model explains the

value premium, i.e., the risk-adjusted return difference between value and growth stocks is

statistically insignificant. The last column shows that the conditional alphas on HiTec and

Telcm portfolios are, respectively, 0.26% and -0.05% per month, generating a risk-adjusted

return spread of 31 basis points per month. As reported in the last row, the Wald2 statistic

from testing the significance of this return spread is 0.40 with a p-value of 0.53, yielding

insignificant industry effect over the sample period 1990-2010.

The differences in conditional alphas are both economically and statistically insignificant,
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indicating that the two-factor model proposed in equation (7) provides both statistical and

economic success in explaining stock market anomalies. Overall, the DCC-based conditional

covariances capture the time-series and cross-sectional variation in returns on size, book-

to-market, and industry portfolios because the essential tests of the conditional ICAPM

are passed: (i) significantly positive risk-return and uncertainty-return tradeoffs; (ii) the

conditional alphas are jointly zero; and (iii) the conditional alphas for high-return and low-

return portfolios are not statistically different from each other.16

6.2 Economic Significance of Uncertainty-Return Tradeoff

In this section, we test whether the risk-return (A) and uncertainty-return (B) coefficients

are sensible and whether the uncertainty measure is associated with macroeconomic state

variables.

Specifically, we rely on equation (21) and compute the expected excess return on the

market portfolio based on the estimated prices of risk and uncertainty as well as the sample

averages of the conditional covariance measures:

Et [Rm,t+1] = αm + A · V art (Rm,t+1) + B · Covt (Rm,t+1, V RPt+1) (22)

where αm = 0.0008, A = 3.96, and B = 0.0058 for the 10 size portfolios; αm = 0.0032,

A = 2.51, and B = 0.0050 for the 10 book-to-market portfolios; and αm = 0.0019, A =

3.41, and B = 0.0060 for the 10 industry portfolios (see Table 1). The sample averages

of V art (Rm,t+1) and Covt (Rm,t+1, V RPt+1) are 0.002187 and -0.7026, respectively.17 These

values produce Et [Rm,t+1] = 0.54% per month when the parameters are estimated using

the 10 size portfolios, Et [Rm,t+1] = 0.52% per month when the parameters are estimated

using the 10 book-to-market portfolios, and Et [Rm,t+1] = 0.51% when the parameters are

estimated using the 10 industry portfolios.

16As discussed in Section E of the internet appendix, we estimate the DCC-based conditional covariances
using the Asymmetric GARCH model of Glosten, Jagannathan, and Runkle (1993). Table III of the internet
appendix shows that our main findings from the Asymmetric GARCH model are very similar to those
reported in Table 1.

17The negative value for the conditional covariance of the market return with the VRP factor is consistent
with the consumption-based asset pricing model and the negative contemporaneous correlation between the
market return and the VRP factor reported by Bollerslev, Tauchen, and Zhou (2009).
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To evaluate the performance of our model with risk and uncertainty, we calculate the

sample average of excess returns on the market portfolio, which is a standard benchmark

for the market risk premium. The sample average of Rm,t+1 is found to be 0.52% per month

for the period January 1990 – December 2010, indicating that the estimated market risk

premiums of 0.51% – 0.54% are very close to the benchmark. This again shows outstanding

performance of the two-factor model introduced in the paper.

To further appreciate the economics behind the apparent connection between the variance

risk premium (VRP) and the time-series and cross-sectional variations in expected stock

returns, Figure 2 plots the VRP together with the quarterly growth rate in GDP. As seen

from the figure, there is a tendency for VRP to rise in the quarter before a decline in GDP,

while it typically narrows ahead of an increase in GDP. Indeed, the sample correlation equals

-0.17 between lag VRP and current GDP (as first reported in Bollerslev et al., 2009). In

other words, VRP as a proxy for economic uncertainty does seem to negatively relate to

future macroeconomic performance.

Thus, not only the difference between the implied and expected variances positively

covaries with stock returns, it also covaries negatively with future growth rates in GDP.

Intuitively, when VRP is high (low), it generally signals a high (low) degree of aggregate

economic uncertainty. Consequently agents tend to simultaneously cut (increase) their con-

sumption and investment expenditures and shift their portfolios from more (less) to less

(more) risky assets. This in turn results in a rise (decrease) in expected excess returns for

stock portfolios that covaries more (less) with the macroeconomic uncertainty, as proxied by

VRP.

As mentioned earlier, in the internet appendix (Section A), we provide a two-factor

consumption-based asset pricing model in which the consumption growth and its volatility

follow the joint dynamics and hence VRP affects expected future returns. In essence, our

finding of a positive significant relation between economic uncertainty measure and stock

expected returns, is consistent with the consumption-based model’s implication that the

intertemporal elasticity of substitution (IES) is larger than one, i.e., agents prefer an earlier

resolution of uncertainty, hence uncertainty (proxied by VRP) carries a positive premium,
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and heightened VRP does signal the worsening of macroeconomic fundamentals.

6.3 Relative Performance of Conditional ICAPMwith Uncertainty

We now assess the relative performance of the newly proposed model in predicting the cross-

section of expected returns on equity portfolios. Specifically, we test whether the conditional

ICAPM with the market and uncertainty factors outperforms the conditional CAPM with

the market factor in terms of statistical fit. The goodness of fit of an asset pricing model

describes how well it fits a set of realized return observations. Measures of goodness of fit

typically summarize the discrepancy between observed values and the values expected under

the model in question. Hence, we focus on the cross-section of realized average returns on

equity portfolios (as a benchmark) and the portfolios’ expected returns implied by the two

competing models.

Using equation (20), we compute the expected excess return on equity portfolios based on

the estimated prices of risk and uncertainty (A,B) and the sample averages of the conditional

covariance measures, Covt (Ri,t+1, Rm,t+1) and Covt (Ri,t+1, V RPt+1):

Et [Ri,t+1] = αi + A · Covt (Ri,t+1, Rm,t+1) + B · Covt (Ri,t+1, V RPt+1) . (23)

Table 2 presents the realized monthly average excess returns on the size, book-to-market,

and industry portfolios and the cross-section of expected excess returns generated by the

Conditional CAPM and the Conditional ICAPM models. Clearly the newly proposed model

with risk and uncertainty provides much more accurate estimates of expected returns on the

size, book-to-market, and industry portfolios. Especially for the size and industry portfolios,

expected returns implied by the Conditional ICAPM with the market and VRP factors are

almost identical to the realized average returns. The last row in Table 2 reports the Mean

Absolute Percentage Errors (MAPE) for the two competing models:

MAPE =
|Realized− Expected|

Expected
, (24)

where “Realized” is the realized monthly average excess return on each equity portfolio and

“Expected” is the expected excess return implied by equation (23). For the conditional

24



CAPM with the market factor, MAPE equals 5.20% for the size portfolios, 5.37% for the

book-to-market portfolios, and 6.32% for the industry portfolios. Accounting for the variance

risk premium improves the cross-sectional fitting significantly: MAPE reduces to 0.61% for

the size portfolios, 1.66% for the book-to-market portfolios, and 0.55% for the industry

portfolios.

Figure 3 provides a visual depiction of the realized and expected returns for the size, book-

to-market, and industry portfolios. It is clear that the conditional ICAPM with uncertainty

nails down the realized returns of the size, book-to-market, and industrial portfolios, while

the conditional CAPM systematically over-predicts these portfolio returns. Overall, the

results indicate superior performance of the conditional asset pricing model introduced in

the paper.

7 Robustness Check

In this section we first examine whether the model’s performance changes when we use

a larger cross-section of equity portfolios. Second, we provide robustness analysis when

controlling for popular macroeconomic and financial variables. Third, we provide results

from individual stocks. Finally, we test whether the predictive power of the variance risk

premia is subsumed by the market illiquidity and/or credit risk.

7.1 Results from Larger Cross-Section of Industry Portfolios

Given the positive risk-return and positive uncertainty-return coefficient estimates from the

three data sets and the success of the conditional asset pricing model in explaining the

industry, size, and value premia, we now examine how the model performs when we use a

larger cross-section of equity portfolios.

The robustness of our findings is investigated using the monthly excess returns on the

value-weighted 17-, 30-, 38-, 48-, and 49-industry portfolios for the sample period January

1990 – December 2010. Table 3 reports the common slope estimates (A, B), their t-statistics

in parentheses, and the Wald1 and Wald2 statistics along with their p-values in square
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brackets. For the industry portfolios, the risk aversion coefficients (A) are estimated to

be positive, in the range of 2.20 to 2.78, and highly significant with the t-statistics ranging

from 2.31 to 3.34. Consistent with our earlier findings from the 10 size, 10 book-to-market,

and 10 industry portfolios, the results from the larger cross-section of industry portfolios (17

to 49) imply a positive and significant relation between expected return and market risk.

Again similar to our findings from 10 decile portfolios, the uncertainty aversion coefficients

are estimated to be positive, in the range of 0.0036 to 0.0041, and highly significant with

the t-statistics ranging from 2.44 to 4.21. These results provide evidence for a significantly

positive market price of uncertainty and show that assets with higher correlation with the

variance risk premia generate higher returns next month.

Not surprisingly, the Wald1 statistics for all industry portfolios have p-values in the range

of 0.20 to 0.75, indicating that the two-factor asset pricing model explains the time-series

and cross-sectional variation in larger number of equity portfolios. The last row shows that

the Wald2 statistics from testing the equality of conditional alphas on the high-return and

low-return industry portfolios have p-values ranging from 0.44 to 0.80, implying that there

is no significant risk-adjusted return difference between the extreme portfolios of 17, 30,

38, 48, and 49 industries. The differences in conditional alphas are both economically and

statistically insignificant, showing that the two-factor model introduced in the paper provides

success in explaining industry effects.

7.2 Controlling for Macroeconomic Variables

A series of papers argue that the stock market can be predicted by financial and/or macroeco-

nomic variables associated with business cycle fluctuations. The commonly chosen variables

include default spread (DEF), term spread (TERM), dividend price ratio (DIV), and the

de-trended riskless rate or the relative T-bill rate (RREL).18 We define DEF as the difference

between the yields on BAA- and AAA-rated corporate bonds, and TERM as the difference

between the yields on the 10-year Treasury bond and the 3-month Treasury bill. RREL is

18See, e.g., Campbell (1987), Fama and French (1989), and Ferson and Harvey (1991) who test the
predictive power of these variables for expected stock returns.
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defined as the difference between 3-month T-bill rate and its 12-month backward moving

average.19 We obtain the aggregate dividend yield using the CRSP value-weighted index

return with and without dividends based on the formula given in Fama and French (1988).

In addition to these financial variables, we use some fundamental variables affecting the state

of the U.S. economy: Monthly inflation rate based on the U.S. Consumer Price Index (INF);

Monthly growth rate of the U.S. industrial production (IP) obtained from the G.17 database

of the Federal Reserve Board; and Monthly US unemployment rate (UNEMP) obtained from

the Bureau of Labor Statistics.

According to Merton’s (1973) ICAPM, state variables that are correlated with changes

in consumption and investment opportunities are priced in capital markets in the sense that

an asset’s covariance with those state variables affects its expected returns. Merton (1973)

also indicates that securities affected by such state variables (or systematic risk factors)

should earn risk premia in a risk-averse economy. Macroeconomic variables used in the

literature are excellent candidates for these systematic risk factors because innovations in

macroeconomic variables can generate global impact on firm’s fundamentals, such as their

cash flows, risk-adjusted discount factors, and/or investment opportunities. Following the

existing literature, we use the aforementioned financial and macroeconomic variables as

proxies for state variables capturing shifts in the investment opportunity set.

We now investigate whether incorporating these variables into the predictive regressions

affects the significance of the market prices of risk and uncertainty. Specifically, we estimate

the portfolio-specific intercepts and the common slope coefficients from the following panel

regression:

Ri,t+1 = αi + A · Covt (Ri,t+1, Rm,t+1) + B · Covt (Ri,t+1, V RPt+1) + λ ·Xt + εi,t+1

Rm,t+1 = αm + A · V art (Rm,t+1) + B · Covt (Rm,t+1, V RPt+1) + λ ·Xt + εm,t+1

where Xt denotes a vector of lagged control variables; default spread (DEF), term spread

(TERM), relative T-bill rate (RREL), aggregate dividend yield (DIV), inflation rate (INF),

19The monthly data on 10-year T-bond yields, 3-month T-bill rates, BAA- and AAA-rated corporate bond
yields are available from the Federal Reserve statistics release website.
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growth rate of industrial production (IP), and unemployment rate (UNEMP). The common

slope coefficients (A, B, and λ) and their t-statistics are estimated using the monthly excess

returns on the market portfolio and the ten size, book-to-market, and industry portfolios.

As presented in Table 4, after controlling for a wide variety of financial and macroe-

conomic variables, our main findings remain intact for all equity portfolios. The common

slope estimates on the conditional covariances of equity portfolios with the market factor

(A) remain positive and highly significant, indicating a positive and significant relation be-

tween expected return and market risk. Similar to our earlier findings, the common slopes

on the conditional covariances of equity portfolios with the uncertainty factor (B) remain

significantly positive as well, showing that assets with higher correlation with the variance

risk premium generate higher returns next month. Among the control variables, the growth

rate of industrial production is the only variable predicting future returns on equity port-

folios; λIP turns out to be positive and significant—especially for the industry portfolios.

The positive relation between expected stock returns and innovations in output makes eco-

nomic sense. Increases in real economic activity (proxied by the growth rate of industrial

production) increase investors’ expectations of future growth. Overall, the results in Table

4 indicate that after controlling for variables associated with business conditions, the time-

varying exposures of equity portfolios to the market and uncertainty factors carry positive

risk premiums.20

7.3 Results from Individual Stocks

We have so far investigated the significance of risk, uncertainty, and return tradeoffs using

equity portfolios. In this section, we replicate our analyses using individual stocks trading at

NYSE, AMEX, and NASDAQ. First, we generate a dataset for the largest 500 common stocks

(share code = 10 or 11) traded at NYSE/AMEX/NASDAQ. Following Shumway (1997), we

adjust for stock de-listing to avoid survivorship bias.21 Firms with missing observations on

20We also used “expected business conditions” variable of Campbell and Diebold (2009) and our main
findings remain intact for all equity portfolios. To save space, we do not report these results in the paper.
They are available upon request.

21Specifically, the last return on an individual stock used is either the last return available on CRSP, or the
de-listing return, if available. Otherwise, a de-listing return of -100% is included in the study, except that
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beginning-of-month market cap or monthly returns over the period January 1990 – December

2010 are eliminated. Due to the fact that the list of 500 firms changes over time as a result

of changes in firms’ market capitalizations, we obtain more than 500 firms over the period

1990-2010. Specifically, the largest 500 firms are determined based on their end-of-month

market cap as of the end of each month from January 1990 to December 2010. There are 738

unique firms in our first dataset. In our second dataset, the largest 500 firms are determined

based on their market cap at the end of December 2010. Our last dataset contains stocks in

the S&P 500 index. Since the stock composition of the S&P 500 index changes through time,

we rely on the most recent sample (as of December 2010). We also restrict our S&P 500

sample to 318 stocks with non-missing monthly return observations for the period January

1990 – December 2010.

Table 5 presents the common slope estimates (A, B) and their t-statistics for the indi-

vidual stocks in the aforementioned data sets. The risk aversion coefficient is estimated to

be positive and highly significant for all stock samples considered in the paper: A = 6.42

with the t-statistic of 8.04 for the first dataset containing 738 stocks (largest 500 stocks as of

the end of each month from January 1990 to December 2010); A = 6.80 with the t-statistic

of 8.70 for the second dataset containing largest 500 stocks as of the end of December 2010;

and A = 6.02 with the t-statistic of 6.79 for the last dataset containing 318 stocks with

non-missing monthly return observations for the period 1990-2010. Confirming our findings

from equity portfolios, the results from individual stocks imply a positive and significant

relation between expected return and market risk. Similarly, consistent with our earlier

findings from equity portfolios, the uncertainty aversion coefficient is also estimated to be

positive and highly significant for all data sets: B = 0.0043 with the t-statistic of 3.61 for the

first dataset, B = 0.0044 with the t-statistic of 3.67 for the second dataset, and B = 0.0046

with the t-statistic of 3.52 for the last dataset. These results indicate a significantly positive

market price of uncertainty for large stocks trading in the U.S. stock market.

the deletion reason is coded as 500 (reason unavailable), 520 (went to OTC), 551-573, 580 (various reason),
574 (bankruptcy), and 584 (does not meet exchange financial guidelines). For these observations, a return
of -30% is assigned.
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7.4 Controlling for Market Illiquidity and Default Risk

Elevated variance risk premia during economic recessions and market downturns often cor-

respond to the periods in which market illiquidity and default risk are both higher. Thus,

it is natural to think that the conditional covariances of equity portfolios with market illiq-

uidity and credit risk factors are positively linked to expected returns. In this section, we

test whether the covariances with VRP could be picking up covariances with illiquidity and

default risk.

Following Amihud (2002), we measure market illiquidity in a month as the average daily

ratio of the absolute market return to the dollar trading volume within the month:

ILLIQt =
1

n

n
∑

d=1

|Rm,d|
V OLDm

where Rm,d and V OLDm,d are, respectively, the daily return and daily dollar trading volume

for the S&P 500 index on day d, and n is the number of trading days in month t.

First, we generate the DCC-based conditional covariances of portfolio returns with market

illiquidity and then estimate the common slope coefficients (A, B1, B2) from the following

panel regressions:

Ri,t+1 = αi + A · Covt (Ri,t+1, Rm,t+1) + B1 · Covt (Ri,t+1, V RPt+1)

+B2 · Covt (Ri,t+1,∆ILLIQt+1) + εi,t+1

Rm,t+1 = αm + A · V art (Rm,t+1) + B1 · Covt (Rm,t+1, V RPt+1)

+B2 · Covt (Rm,t+1,∆ILLIQt+1) + εm,t+1

where Covt (Ri,t+1,∆ILLIQt+1) and Covt (Rm,t+1,∆ILLIQt+1) are the time-t expected con-

ditional covariance between the change in market illiquidity and the excess return on portfolio

i and market portfolio m, respectively.

Table 6, Panel A, presents the common slope coefficients and their t-statistics estimated

using the monthly excess returns on the market portfolio and the 10 size, book-to-market,

and industry portfolios for the sample period January 1990 - December 2010. The slope

on Covt (Ri,t+1,∆ILLIQt+1) is found to be positive but statistically insignificant for all
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equity portfolios considered in the paper. A notable point in Table 6 is that the slopes on

Covt (Ri,t+1, Rm,t+1) and Covt (Ri,t+1, V RPt+1) remain positive and highly significant after

controlling for the covariances of equity portfolios with market illiquidity.

Next, we test whether the variance risk premium is proxying for default or credit risk.

We use the TED spread as an indicator of credit risk and the perceived health of the banking

system. The TED spread is the difference between the interest rates on interbank loans and

short-term U.S. government debt (T-bills). TED is an acronym formed from T-Bill and ED,

the ticker symbol for the Eurodollar futures contract.22 The size of the spread is usually

denominated in basis points (bps). For example, if the T-bill rate is 5.10% and ED trades at

5.50%, the TED spread is 40 bps. The TED spread fluctuates over time but generally has

remained within the range of 10 and 50 bps (0.1% and 0.5%) except in times of financial crisis.

A rising TED spread often presages a downturn in the U.S. stock market, as it indicates that

liquidity is being withdrawn. The TED spread is an indicator of perceived credit risk in the

general economy. This is because T-bills are considered risk-free while LIBOR reflects the

credit risk of lending to commercial banks. When the TED spread increases, that is a sign

that lenders believe the risk of default on interbank loans (also known as counterparty risk)

is increasing. Interbank lenders therefore demand a higher rate of interest, or accept lower

returns on safe investments such as T-bills. When the risk of bank defaults is considered to

be decreasing, the TED spread decreases.

We first estimate the DCC-based conditional covariances of portfolio returns with the

TED spread and then estimate the common slope coefficients from the following SUR re-

22Initially, the TED spread was the difference between the interest rates for three-month U.S. Treasuries
contracts and the three-month Eurodollars contract as represented by the London Interbank Offered Rate
(LIBOR). However, since the Chicago Mercantile Exchange dropped T-bill futures, the TED spread is now
calculated as the difference between the three-month T-bill interest rate and three-month LIBOR.
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gressions:

Ri,t+1 = αi + A · Covt (Ri,t+1, Rm,t+1) + B1 · Covt (Ri,t+1, V RPt+1)

+B2 · Covt (Ri,t+1,∆TEDt+1) + εi,t+1

Rm,t+1 = αm + A · V art (Rm,t+1) + B1 · Covt (Rm,t+1, V RPt+1)

+B2 · Covt (Rm,t+1,∆TEDt+1) + εm,t+1

where Covt (Ri,t+1,∆TEDt+1) and Covt (Rm,t+1,∆TEDt+1) are the time-t expected condi-

tional covariance between the changes in TED spread and the excess returns on portfolio i

and market portfolio m, respectively.

Table 6, Panel A, shows the common slope coefficients and their t-statistics estimated

using the monthly excess returns on the market portfolio and the size, book-to-market, and

industry portfolios. The slope on Covt (Ri,t+1,∆TEDt+1) is found to be positive for the size

and book-to-market portfolios, and negative for the industry portfolios. Aside from yielding

an inconsistent predictive relation with future returns, the slopes on the conditional covari-

ances with the change in TED spread are statistically insignificant for all equity portfolios.

Similar to our earlier findings, the slopes on the conditional covariances with the market

risk and uncertainty factors remain positive and highly significant after controlling for the

covariances with default risk.

Finally, we investigate the significance of risk and uncertainty coefficients after controlling

for liquidity and credit spread simultaneously:

Ri,t+1 = αi + A · Covt (Ri,t+1, Rm,t+1) + B1 · Covt (Ri,t+1, V RPt+1)

+B2 · Covt (Ri,t+1,∆ILLIQt+1) + B3 · Covt (Ri,t+1,∆TEDt+1) + εi,t+1

Rm,t+1 = αm + A · V art (Rm,t+1) + B1 · Covt (Rm,t+1, V RPt+1)

+B2 · Covt (Rm,t+1,∆ILLIQt+1) + B3 · Covt (Rm,t+1,∆TEDt+1) + εm,t+1

As shown in Panel A of Table 6, for the extended specification above, the common

slope coefficient, B2 on Covt (Ri,t+1,∆ILLIQt+1) is estimated to be positive and marginally

significant for the book-to-market and industry portfolios, whereas B2 is insignificant for

the size portfolios. The covariances of equity portfolios with the change in TED spread do
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not predict future returns as B3 is insignificant for all equity portfolios. Controlling for the

market illiquidity and credit risk does not affect our main findings: the market risk-return

and uncertainty-return coefficients (A and B1) are both positive and highly significant for all

equity portfolios. Equity portfolios that are highly correlated with VRP carry a significant

premium relative to portfolios that are uncorrelated or minimally correlated with VRP.

We have so far provided evidence from the individual equity portfolios (10 size, 10 book-

to-market, and 10 industry portfolios). We now investigate whether our main findings remain

intact if we use a joint estimation with all test assets simultaneously (total of 30 portfolios).

Panel B of Table 6 reports the parameter estimates and the t-statistics that are adjusted for

heteroskedasticity and autocorrelation for each series and the cross-correlations among the

error terms. As shown in the first row of Panel B, the risk aversion coefficient is estimated

to be positive and highly significant for the pooled dataset: A = 2.31 with the t-statistic

of 2.64, implying a positive and significant relation between expected return and market

risk. Similar to our earlier findings, the uncertainty aversion coefficient is also estimated to

be positive and highly significant for the joint estimation: B = 0.0053 with the t-statistic

of 3.72. These results indicate a significantly positive market price of uncertainty when all

portfolios are combined together. Equity portfolios with higher sensitivity to increases in

VRP are expected to generate higher returns next period.

The last three rows in Panel B of Table 6 provide evidence for a positive and marginally

significant relation between Covt (Ri,t+1,∆ILLIQt+1) and future returns, indicating that the

conditional covariances of equity portfolios with the market illiquidity are positively linked to

expected returns. However, the insignificant relation between Covt (Rm,t+1,∆TEDt+1) and

portfolio returns remains intact for the joint estimation as well. A notable point in Panel B

is that controlling for the market illiquidity and default risk individually and simultaneously

does not influence the significant predictive power of the conditional covariances of portfolio

returns with the market risk and VRP factors.
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8 Cross-Sectional Relation between VRP-beta and Ex-

pected Returns

In this section, we investigate the cross-sectional asset pricing performance of our model

by testing the significance of a cross-sectional relation between expected returns on equity

portfolios and the portfolios’ conditional covariances with VRP. Following Bali (2008) and

Campbell, Giglio, Polk, and Turley (2012), we use the 25 and 100 Size and Book-to-Market

(BM) portfolios of Kenneth French as test assets.23 First, we estimate the DCC-based

conditional covariances of 25 and 100 Size/BM portfolios with VRP and then for each month

we form quintile portfolios sorted based on the portfolios’ conditional covariances (or betas)

with VRP. Since the conditional variance of VRP is the same across portfolios, we basically

sort equity portfolios based on their VRP-beta:

V RP beta
i,t =

cov [Ri,t+1, V RPt+1|Ωt]

var [V RPt+1|Ωt]
, (25)

where V RP beta
i,t is the VRP-beta of portfolio i in month t, cov [Ri,t+1, V RPt+1|Ωt] is the condi-

tional covariance of portfolio i with VRP estimated using equation (18), and var [V RPt+1|Ωt]

is the conditional variance of VRP which is constant in the cross-section of equity portfolios.

Table 7 presents the average excess monthly returns of quintile portfolios that are formed

by sorting the 25 and 100 Size/BM portfolios based on their VRP-beta. When we use the 25

Size/BM portfolios as test assets, each quintile arbitrage portfolio has a total of five Size/BM

portfolios. Similarly, when we use the 100 Size/BM portfolios as test assets, each arbitrage

portfolio has a total of 20 Size/BM portfolios. The results are presented for the sample

period January 1990 to December 2010.

In Table 7, Q1 (Low V RP beta) is the quintile portfolio of Size/BM portfolios with the

lowest VRP-beta during the past month, and Q5 (High V RP beta) is the quintile portfolio of

Size/BM portfolios with the highest VRP-beta during the previous month. As shown in the

left panel of Table 7, when the 25 Size/BM portfolios are used, the average excess return

increases from 0.38% per month to 0.96% per month as we move from Q1 to Q5, generating

2325 Size/BM and 100 Size/BM portfolios are described in and obtained from Kenneth French’s data
library.
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an average return difference of 0.58% per month between Quintile 5 (High V RP beta) and

Quintile 1 (Low V RP beta). This return difference is statistically significant with a Newey-

West (1987) t-statistic of 2.51. In addition to the average excess returns, Table 7 also presents

the intercepts (Fama-French three-factor alphas, denoted by FF3) from the regression of

the average excess portfolio returns on a constant, the excess market return, a size factor

(SMB), and a book-to-market factor (HML), following Fama and French (1993).24 As shown

in the last row of Table 7, the difference in FF3 alphas between the High V RP beta and

Low V RP beta portfolios is 0.69% per month with a Newey-West t-statistic of 3.33. These

results indicate that an investment strategy that goes long Size/BM portfolios in the highest

V RP beta quintile and shorts Size/BM portfolios in the lowest V RP beta quintile produces

average raw and risk-adjusted returns of 6.96% to 8.28% per annum, respectively. These

return and alpha differences are economically and statistically significant at all conventional

levels.

To determine whether the cross-sectional predictive power of VRP-beta is driven by the

outperformance of High V RP beta portfolios and/or the underperformance of Low V RP beta

portfolios, we compute the FF3 alpha of each quintile portfolio as well. As reported in Table

7, FF3 alpha of Q1 is -0.42% per month with a t-statistic of -2.66, and FF3 alpha of Q5 is

0.27% per month with a t-statistic of 2.46. These statistically significant FF3 alphas indi-

cate that the significantly positive link between VRP-beta and the cross-section of portfolio

returns is driven by both the outperformance of High V RP beta and the underperformance of

Low V RP beta portfolios.

The right panel of Table 7 shows that similar results are obtained from the 100 Size/BM

portfolios. The average excess return increases from 48 to 97 basis points per month as we

move from the Low V RP beta to High V RP beta quintile portfolios. The last row of Table 7

presents an average return difference of 49 basis points per month between Q5 and Q1, with

a Newey-West t-statistic of 2.14. Similar to our earlier findings, the difference in FF3 alphas

between the High V RP beta and Low V RP beta portfolios is positive, 0.65% per month, and

24SMB (small minus big) and HML (high minus low) factors are described in and obtained from Kenneth
French’s data library.
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highly significant with a t-statistic of 2.70. These results indicate that the equity portfolios

in highest V RP beta quintile generate 5.88% to 7.80% more annual raw and risk-adjusted

returns compared to the equity portfolios in the lowest V RP beta quintile. As shown in the

last column of Table 7, FF3 alpha of Q1 is -0.37% per month with a t-statistic of -2.61, and

FF3 alpha of Q5 is 0.28% per month with a t-statistic of 2.10, implying that the significantly

positive link between VRP-beta and the cross-section of expected returns on the 100 Size/BM

portfolios is driven by both the outperformance of High V RP beta and the underperformance

of Low V RP beta portfolios.

We now examine the cross-sectional relation between VRP-beta, Market-beta and ex-

pected returns using Fama and MacBeth (1973) regressions. We calculate the time-series

averages of the slope coefficients from the regressions of one-month ahead portfolio returns on

the conditional covariances of portfolios with the market and VRP factors, Covt (Ri,t+1, Rm,t+1)

and Covt (Ri,t+1, V RPt+1). The average slopes provide standard Fama-MacBeth tests for

determining whether the market and/or uncertainty factors on average have non-zero premi-

ums. Monthly cross-sectional regressions are run for the following asset pricing specification:

Ri,t+1 = λ0,t + λ1,t · Covt (Ri,t+1, Rm,t+1) + λ2,t · Covt (Ri,t+1, V RPt+1) + εi,t+1

where Ri,t+1 is the excess return on portfolio i in month t+ 1, λ1,t and λ2,t are the monthly

slope coefficients on Covt (Ri,t+1, Rm,t+1) and Covt (Ri,t+1, V RPt+1), respectively. The pre-

dictive cross-sectional regressions of Ri,t+1 are run on the time-t expected conditional covari-

ances of portfolios with the market and VRP factors.

We compute the time series averages of the slope coefficients (λ̄1, λ̄2) over the 252 months

from January 1990 to December 2010 for both the 25 and 100 Size/BM portfolios. The

bivariate regression results produce a positive and statistically significant relation between

Covt (Ri,t+1, V RPt+1) and the cross-section of portfolios returns. The average slope, λ̄2, is

estimated to be 0.0603 with a Newey-West t-statistic of 2.25 for the 25 Size/BM portfolios,

and 0.0176 with a Newey-West t-statistic of 2.15 for the 100 Size/BM portfolios. Although

we find a robust, significantly positive link between VRP-beta and expected returns from the

Fama-MacBeth regressions, the cross-sectional relation between market beta and expected
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returns turns out to be sensitive to the choice of test assets. Specifically, the average slope,

λ̄1, is found to be 7.78 with a t-statistic of 1.94 for the 25 Size/BM portfolios, whereas it is

positive, but statistically insignificant for the 100 Size/BM portfolios.

The economic significance of the monthly slope coefficients from the Fama-MacBeth

regressions can be interpreted based on the long-short equity portfolios. First, we com-

pute the average values of Covt (Ri,t+1, V RPt+1) for the Size/BM portfolios sorted into the

quintile portfolios. For the 25 Size/BM portfolios, the average Covt (Ri,t+1, V RPt+1) val-

ues are −1.0150 for Quintile 1, −0.8049 for Quintile 2, −0.7104 for Quintile 3, −0.6478

for Quintile 4, and −0.5655 for Quintile 5.25 Hence, the difference in Covt (Ri,t+1, V RPt+1)

values between equity portfolios in the Low V RP beta and High V RP beta quintiles is 0.4495

(= −0.5655 − (−1.0150)). To be consistent with our univariate portfolio results in Ta-

ble 7, we run a univariate regression of Ri,t+1 on Covt (Ri,t+1, V RPt+1), and the average

slope of 0.0149 implies that the equity portfolios in highest V RP beta quintile generate 0.67%

(0.0149 × 0.4495 = 0.67%) more monthly returns compared to the equity portfolios in the

lowest V RP beta quintile.

To determine the economic significance of the slope coefficients for the 100 Size/BM port-

folios, we calculate the average Covt (Ri,t+1, V RPt+1) values for each quintile portfolio as well:

−1.0872 for Quintile 1, −0.8206 for Quintile 2, −0.7150 for Quintile 3, −0.6308 for Quintile

4, and −0.5053 for Quintile 5. Hence, the difference in Covt (Ri,t+1, V RPt+1) values between

equity portfolios in the Low V RP beta and High V RP beta quintiles is 0.5819. The univariate

Fama-MacBeth regressions of one-month ahead portfolio returns on Covt (Ri,t+1, V RPt+1)

yields an average slope coefficient of 0.0103 for the 100 Size/BM portfolios. This positive

and significant average slope coefficient implies that buying the Size/BM portfolios in high-

est V RP beta quintile and short-selling the Size/BM portfolios in the lowest V RP beta quintile

generate a 0.60% return in the following month. These return magnitudes implied by the

Fama-MacBeth slope coefficients (0.67% and 0.60% per month) are in line with the univariate

portfolio results reported in Table 7 (0.58% and 0.49% per month, respectively).

25The negative values for the conditional covariances of equity portfolios with the VRP factor are consistent
with the negative value for conditional covariance of the market return with the VRP factor reported earlier
in Section 6.2.
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9 Conclusion

Although uncertainty is more common in decision-making process than risk, relatively little

attention is paid to the phenomenon of uncertainty in empirical asset pricing literature. This

paper focuses on economic uncertainty and augments the original Merton’s (1973) ICAPM

to introduce a conditional ICAPM model with time-varying market risk and uncertainty.

According to the augmented asset pricing model, the premium on equity is composed of

two separate terms; the first term compensates for the market risk and the second term

representing a true premium for economic uncertainty. We use the conditional ICAPM to

test whether the time-varying conditional covariances of equity returns with market and

uncertainty factors predict their future returns.

Since information about economic uncertainty is too imprecise to measure with avail-

able data, we have to come up with a proxy for uncertainty that should be consistent with

the investment opportunity set of risk-averse investors. Following Zhou (2010), we measure

economic uncertainty with the variance risk premium (VRP) of the aggregate stock market

portfolio. Different from earlier studies, we provide empirical evidence that VRP is indeed

closely related to economic and financial market uncertainty. Specifically, we generate sev-

eral proxies for uncertainty based on the macroeconomic variables, return distributions of

financial firms, credit default swap market, and investors’ disagreement about individual

stocks. We show that VRP is highly correlated with all measures of uncertainty.

Based on the two-factor asset pricing model, we investigate whether the market prices of

risk and uncertainty are economically and statistically significant in the U.S. equity market.

Using the dynamic conditional correlation (DCC) model of Engle (2002), we estimate equity

portfolios’ conditional covariances with the market portfolio and VRP factors and then test

whether these dynamic conditional covariances predict future returns on equity portfolios.

The empirical results from the size, book-to-market, and industry portfolios indicate that

the DCC-based conditional covariances of equity portfolios with the market and VRP factors

predict the time-series and cross-sectional variation in stock returns. We find the risk-return

coefficients to be positive and highly significant, implying a strongly positive link between
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expected return and market risk. Similarly, the results indicate a significantly positive market

price of uncertainty. That is, equity portfolios that are highly correlated with uncertainty

(proxied by VRP) carry a significant premium relative to portfolios that are uncorrelated

or minimally correlated with VRP. In addition to the size, book-to-market, and industry

portfolios, we investigate the significance of risk, uncertainty, and return tradeoffs using the

largest 500 stocks trading at NYSE, AMEX, and NASDAQ as well as stocks in the S&P

500 index. Consistent with our findings from equity portfolios, we find significantly positive

market prices of risk and uncertainty for large stocks trading in the U.S. equity market.

We also examine whether the conditional covariances with VRP could be picking up

the covariances with market illiquidity and/or default risk. We find that the significantly

positive link between market covariance risk, uncertainty and future returns remain intact

after controlling for liquidity and credit risk.

Finally, we investigate the cross-sectional asset pricing performance of our model using

the long-short equity portfolios and the Fama-MacBeth regressions. The results indicate that

the annual average raw and risk-adjusted returns of the equity portfolios in the highest VRP-

beta quintile are 6 to 8 percent higher than the annual average returns of the equity portfolios

in the lowest VRP-beta quintile. After controlling for the market, size, and book-to-market

factors of Fama and French (1993), the positive relation between VRP-beta and the cross-

section of portfolio returns remains economically and statistically significant. Overall, we

conclude that the time-varying exposures of equity portfolios to the variance risk premia

predict the time-series and cross-sectional variation in stock returns.
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Table 1 Results from Ten Decile Size, Book-to-Market, and Industry Portfolios

This table reports the portfolio-specific intercepts and the common slope estimates from the following panel regression:

Ri,t+1 = αi +A · Covt (Ri,t+1, Rm,t+1) +B · Covt (Ri,t+1, V RPt+1) + εi,t+1

Rm,t+1 = αm +A · V art (Rm,t+1) +B · Covt (Rm,t+1, V RPt+1) + εm,t+1

where Covt (Ri,t+1, Rm,t+1) is the time-t expected conditional covariance between the excess return on portfolio i (Ri,t+1)
and the excess return on the market portfolio (Rm,t+1 ), Covt (Ri,t+1, V RPt+1) is the time-t expected conditional covariance
between the excess return on portfolio i and the variance risk premia (V RPt+1), Covt (Rm,t+1, V RPt+1) is the time-t expected
conditional covariance between the excess return on the market portfolio m and the variance risk premia (V RPt+1), and
V art (Rm,t+1) is the time-t expected conditional variance of excess returns on the market portfolio. The parameters and their
t-statistics are estimated using the monthly excess returns on the market portfolio and the ten decile size, book-to-market, and
industry portfolios for the sample period from January 1990 to December 2010. The alphas (αi) are reported for each equity
portfolio and the t-statistics are presented in parentheses. The t-statistics are adjusted for heteroskedasticity and autocorrelation
for each series and cross-correlations among the portfolios. The last four rows, respectively, show the common slope coefficients
(A and B), the Wald1 statistics from testing the joint hypothesis H0 : α1 = α2 = ...αm = 0 , and the Wald2 statistics from
testing the equality of Alphas for high-return and low-return portfolios (Small vs. Big; Value vs. Growth; and HiTec vs. Telcm).
The p-values of Wald1 and Wald2 statistics are given in square brackets.

Size αi, αm BM αi, αm Industry αi, αm

Small 0.0041 Growth 0.0036 NoDur 0.0043

(0.94) (0.90) (1.53)

2 0.0022 2 0.0048 Durbl 0.0019

(0.48) (1.38) (0.37)

3 0.0025 3 0.0053 Manuf 0.0046

(0.58) (1.58) (1.26)

4 0.0015 4 0.0065 Enrgy 0.0059

(0.35) (1.88) (1.88)

5 0.0023 5 0.0057 HiTec 0.0026

(0.54) (1.74) (0.45)

6 0.0023 6 0.0051 Telcm -0.0005

(0.61) (1.51) (-0.13)

7 0.0028 7 0.0058 Shops 0.0028

(0.76) (1.78) (0.80)

8 0.0020 8 0.0059 Hlth 0.0036

(0.53) (1.76) (1.13)

9 0.0023 9 0.0067 Utils 0.0038

(0.67) (1.94) (1.39)

Big 0.0001 Value 0.0082 Other 0.0018

(0.01) (1.90) (0.47)

Market 0.0008 Market 0.0032 Market 0.0019

(0.17) (1.23) (0.55)

A 3.9562 A 2.5101 A 3.4055

(3.12) (2.53) (2.35)

B 0.0058 B 0.0050 B 0.0060

(2.97) (2.27) (2.78)

Wald1 16.74 Wald1 8.88 Wald1 14.35

[0.12] [0.63] [0.21]

Wald2 1.56 Wald2 1.79 Wald2 0.40

[0.21] [0.18] [0.53]
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Table 2 Relative Performance of Conditional ICAPM with Risk and Uncertainty

This table presents the realized monthly average excess returns on the size, book-to-market, and industry portfolios and the
cross-section of expected excess returns generated by the Conditional CAPM with the market factor and the Conditional
ICAPM with the market and VRP factors. The last row reports the Mean Absolute Percentage Errors (MAPE) for the two
competing models.

Realized Return Benchmark Conditional ICAPM with VRP Conditional CAPM

Size Average Excess Returns Expected Excess Returns Expected Excess Returns

Small 0.8464% 0.8461% 0.8742%

2 0.7737% 0.7677% 0.8110%

3 0.7690% 0.7647% 0.8093%

4 0.6632% 0.6637% 0.7032%

5 0.7525% 0.7550% 0.7943%

6 0.7055% 0.7025% 0.7406%

7 0.7409% 0.7379% 0.7749%

8 0.6837% 0.6810% 0.7221%

9 0.6670% 0.6643% 0.7000%

Big 0.4479% 0.4598% 0.4789%

MAPE 0.61% 5.20%

Realized Return Benchmark Conditional ICAPM with VRP Conditional CAPM

Book-to-Market Average Excess Returns Expected Excess Returns Expected Excess Returns

Growth 0.5286% 0.5327% 0.5645%

2 0.5614% 0.5658% 0.5961%

3 0.6140% 0.6039% 0.6488%

4 0.6752% 0.6559% 0.6960%

5 0.6119% 0.6017% 0.6423%

6 0.5439% 0.5547% 0.5803%

7 0.6014% 0.5979% 0.6360%

8 0.5885% 0.5956% 0.6233%

9 0.6827% 0.6666% 0.7133%

Value 0.8221% 0.7994% 0.8564%

MAPE 1.66% 5.37%

Realized Return Benchmark Conditional ICAPM with VRP Conditional CAPM

Industry Average Excess Returns Expected Excess Returns Expected Excess Returns

Telcm 0.2727% 0.2747% 0.3280%

Utils 0.4712% 0.4727% 0.4965%

Other 0.4965% 0.4910% 0.5366%

Durbl 0.5313% 0.5315% 0.5513%

Shops 0.5954% 0.5912% 0.6247%

Hlth 0.6138% 0.6088% 0.6478%

NoDur 0.6110% 0.6152% 0.6534%

Manuf 0.7172% 0.7206% 0.7474%

Enrgy 0.7606% 0.7643% 0.7824%

HiTec 0.8358% 0.8350% 0.8466%

MAPE 0.55% 6.32%
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Table 3 Results from Larger Cross-Section of Industry Portfolios

This table presents the common slope estimates (A, B) from the following panel regression:

Ri,t+1 = αi +A · Covt (Ri,t+1, Rm,t+1) +B · Covt (Ri,t+1, V RPt+1) + εi,t+1

Rm,t+1 = αm +A · V art (Rm,t+1) +B · Covt (Rm,t+1, V RPt+1) + εm,t+1

where Covt (Ri,t+1, Rm,t+1) is the time-t expected conditional covariance between the excess return on portfolio i (Ri,t+1) and the excess return on
the market portfolio (Rm,t+1 ), Covt (Ri,t+1, V RPt+1) is the time-t expected conditional covariance between the excess return on portfolio i and
the variance risk premia (V RPt+1), Covt (Rm,t+1, V RPt+1) is the time-t expected conditional covariance between the excess return on the market
portfolio m and the variance risk premia (V RPt+1), and V art (Rm,t+1) is the time-t expected conditional variance of excess returns on the market
portfolio. The parameters and their t-statistics are estimated using the monthly excess returns on the market portfolio and the 17, 30, 38, 48, and
49 industry portfolios for the sample period from January 1990 to December 2010. The alphas (αi) are reported for each equity portfolio and the
t-statistics are presented in parentheses. The t-statistics are adjusted for heteroskedasticity and autocorrelation for each series and cross-correlations
among the portfolios. The last four rows, respectively, show the common slope coefficients (A and B), the Wald1 statistics from testing the joint
hypothesis H0 : α1 = α2 = ...αm = 0 , and the Wald2 statistics from testing the equality of Alphas for high-return and low-return portfolios (Small
vs. Big; Value vs. Growth; and HiTec vs. Telcm). The p-values of Wald1 and Wald2 statistics are given in square brackets.

17-industry portfolios 30-industry portfolios 38-industry portfolios 48-industry portfolios 49-industry portfolios

A 2.6399 A 2.1975 A 2.2988 A 2.3271 A 2.7840

(2.31) (2.52) (2.47) (2.97) (3.34)

B 0.0041 B 0.0036 B 0.0035 B 0.0041 B 0.0041

(2.44) (2.98) (2.45) (3.47) (4.21)

Wald1 16.41 Wald1 35.11 Wald1 30.89 Wald1 57.20 Wald1 52.04

[0.56] [0.28] [0.75] [0.20] [0.39]

Wald2 0.58 Wald2 0.06 Wald2 0.32 Wald2 0.53 Wald2 0.13

[0.44] [0.80] [0.57] [0.47] [0.72]
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Table 4 Controlling for Macroeconomic Variables

This table presents the common slope estimates from the following panel regression:

Ri,t+1 = αi +A · Covt (Ri,t+1, Rm,t+1) +B · Covt (Ri,t+1, V RPt+1) + λ ·Xt + εi,t+1

Rm,t+1 = αm +A · V art (Rm,t+1) +B · Covt (Rm,t+1, V RPt+1) + λ ·Xt + εm,t+1

where Xt denotes a vector of lagged control variables; default spread (DEF), term spread (TERM), relative
T-bill rate (RREL), aggregate dividend yield (DIV), inflation rate (INF), growth rate of industrial production
(IP), and unemployment rate (UNEMP). The common slope coefficients (A, B, and λ) and their t-statistics
are estimated using the monthly excess returns on the market portfolio and the ten size, book-to-market,
and industry portfolios for the sample period January 1990 to December 2010. The t-statistics are adjusted
for heteroskedasticity and autocorrelation for each series and cross-correlations among the portfolios. The
last two rows the Wald1 statistics from testing the joint hypothesis H0 : α1 = α2 = ...αm = 0 , and the
Wald2 statistics from testing the equality of Alphas for high-return and low-return portfolios (Small vs. Big;
Value vs. Growth; and HiTec vs. Telcm). The p-values of Wald1 and Wald2 statistics are given in square
brackets.

Size Book-to-Market Industry

A 4.2630 2.5763 4.0421

(3.32) (2.40) (2.74)

B 0.0057 0.0051 0.0066

(2.85) (2.25) (2.96)

λDEF -0.3804 -0.0739 0.6243

(-0.50) (-0.09) (1.02)

λTERM -0.1964 -0.5366 -0.5405

(-0.64) (-1.69) (-2.17)

λRREL 0.2330 0.1834 0.0104

(0.68) (0.52) (0.04)

λDIV 0.0489 0.0228 0.0314

(1.33) (0.60) (1.05)

λINF 0.0270 0.7158 -0.1862

(0.04) (0.93) (-0.31)

λIP 0.7433 0.8689 1.1941

(1.77) (2.01) (3.51)

λUNEMP 0.0031 0.0047 0.0026

(1.13) (1.61) (1.15)

Wald1 16.96 7.97 14.78

[0.11] [0.72] [0.19]

Wald2 1.46 1.63 0.67

[0.23] [0.20] [0.41]
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Table 5 Results from Individual Stocks

This table presents the common slope estimates (A, B) from the following panel regression:

Ri,t+1 = αi +A · Covt (Ri,t+1, Rm,t+1) +B · Covt (Ri,t+1, V RPt+1) + εi,t+1

Rm,t+1 = αm +A · V art (Rm,t+1) +B · Covt (Rm,t+1, V RPt+1) + εm,t+1

where Covt (Ri,t+1, Rm,t+1) is the time-t expected conditional covariance between the excess return on
portfolio i (Ri,t+1) and the excess return on the market portfolio (Rm,t+1 ), Covt (Ri,t+1, V RPt+1) is the
time-t expected conditional covariance between the excess return on portfolio i and the variance risk premia
(V RPt+1), Covt (Rm,t+1, V RPt+1) is the time-t expected conditional covariance between the excess return
on the market portfolio m and the variance risk premia (V RPt+1), and V art (Rm,t+1) is the time-t expected
conditional variance of excess returns on the market portfolio. The parameters and their t-statistics are
estimated using the monthly excess returns on the market portfolio and the largest 500 stocks trading at
NYSE, AMEX, and NASDAQ, and 318 stocks in the S&P 500 index for the sample period from January
1990 to December 2010. First, the largest 500 firms is determined based on their end-of-month market cap
as of the end of each month from January 1990 to December 2010. Due to the fact that the list of 500
firms changes over time as a result of changes in firms’ market capitalizations, there are 738 unique firms
in our first dataset. In our second dataset, the largest 500 firms is determined based on their market cap
at the end of December 2010. Our last dataset contains stocks in the S&P 500 index. Since the stock
composition of the S&P 500 index changes through time, we rely on the most recent sample. We also restrict
our S&P 500 sample to 318 stocks with non-missing monthly return observations for the period January 1990
– December 2010. The t-statistics are adjusted for heteroskedasticity and autocorrelation for each series and
cross-correlations among the portfolios.

Largest 500 Stocks Largest 500 Stocks Largest 500 Stocks

end-of-month as of December 2010 S&P 500 Index

A 6.4237 A 6.8014 A 6.0243

(8.04) (8.70) (6.79)

B 0.0043 B 0.0044 B 0.0046

(3.61) (3.67) (3.52)
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Table 6 Controlling for Market Illiquidity and Default Risk

This table presents the common slope estimates (A, B1, B2, B3) from the following panel regression:

Ri,t+1 = αi +A · Covt (Ri,t+1, Rm,t+1) +B1 · Covt (Ri,t+1, V RPt+1)

+B2 · Covt (Ri,t+1,∆ILLIQt+1) +B3 · Covt (Ri,t+1,∆TEDt+1) + εi,t+1

Rm,t+1 = αm +A · V art (Rm,t+1) +B1 · Covt (Rm,t+1, V RPt+1)

+B2 · Covt (Rm,t+1,∆ILLIQt+1) +B3 · Covt (Rm,t+1,∆TEDt+1) + εm,t+1

where Covt (Ri,t+1, Rm,t+1) is the time-t expected conditional covariance between the excess return on
portfolio i (Ri,t+1) and the excess return on the market portfolio (Rm,t+1 ), Covt (Ri,t+1, V RPt+1) is
the time-t expected conditional covariance between the excess return on portfolio i and the variance risk
premia (V RPt+1), Covt (Ri,t+1,∆ILLIQt+1) is the time-t expected conditional covariance between the
excess return on portfolio i and the change in market illiquidity (∆ILLIQt+1), Covt (Ri,t+1,∆TEDt+1)
is the time-t expected conditional covariance between the excess return on portfolio i and the change in
TED spread (∆TEDt+1), and V art (Rm,t+1) is the time-t expected conditional variance of excess returns
on the market portfolio. In Panel A, the parameters and their t-statistics are estimated using the monthly
excess returns on the market portfolio and the 10 decile size, book-to-market, and industry portfolios for
the sample period from January 1990 to December 2010. In Panel B, the results are generated using a
joint estimation with all test assets simultaneously (total of 30 portfolios). The t-statistics are adjusted for
heteroskedasticity and autocorrelation for each series and the cross-correlations among the portfolios.

Panel A. Results from 10 Equity Portfolios

10 Equity Portfolios A B1 B2 B3

Size 6.2227 0.0069 1.2423

(2.47) (3.07) (1.29)

Size 3.6465 0.0052 0.6372

(2.84) (2.09) (0.91)

Size 5.7826 0.0057 0.4347 1.1582

(2.48) (2.12) (0.69) (1.17)

Book-to-Market 5.3065 0.0062 2.2003

(2.66) (2.65) (1.34)

Book-to-Market 2.5695 0.0056 0.3148

(2.24) (2.37) (0.54)

Book-to-Market 6.4767 0.0079 2.8237 0.3247

(2.13) (2.90) (1.69) (0.61)

Industry 7.8266 0.0080 2.5677

(2.35) (3.16) (1.52)

Industry 3.1868 0.0071 -0.7625

(2.17) (2.88) (-1.11)

Industry 9.2805 0.0102 3.5064 -1.0014

(2.69) (3.49) (1.99) (-1.43)
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Table 6 (continued)

Panel B. Results from 30 Equity Portfolios

A B1 B2 B3

2.3110 0.0053

(2.64) (3.72)

3.2552 0.0060 0.6796

(2.82) (4.03) (1.94)

2.1153 0.0055 -0.0477

(2.41) (3.49) (-0.11)

3.0967 0.0062 0.6497 -0.0844

(2.72) (3.78) (1.95) (-0.20)
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Table 7 Long-Short Equity Portfolios Sorted by VRP-beta

Quintile portfolios are formed every month from January 1990 to December 2010 by sorting the 25 and 100
Size/BM portfolios based on their VRP-beta (V RP beta) over the past one month. Quintile 1 (Q1) is the
portfolio of Size/BM portfolios with the lowest V RP beta over the past one month. Quintile 5 (Q5) is the
portfolio of Size/BM portfolios with the highest V RP beta over the past one month. The table reports the
average excess monthly returns and the 3-factor Fama-French alphas (FF3 alpha) on the VRP-beta sorted
portfolios. The last row presents the differences in monthly returns and the differences in alphas with respect
to the 3-factor Fama-French model between Quintiles 5 and 1 and the corresponding t-statistics. Average
excess return and risk-adjusted returns are given in percentage terms. Newey-West (1987) t-statistics are
reported in parentheses.

25 Size/BM Portfolios 100 Size/BM Portfolios

Average Excess Return FF3 Alpha Average Excess Return FF3 Alpha

Q1 0.0038 -0.0042 Q1 0.0048 -0.0037

(1.08) (-2.66) (1.33) (-2.61)

Q2 0.0074 -0.0005 Q2 0.0072 -0.0008

(2.49) (-0.60) (2.40) (-0.94)

Q3 0.0078 0.0002 Q3 0.0080 0.0004

(2.72) (0.24) (2.75) (0.62)

Q4 0.0097 0.0022 Q4 0.0094 0.0019

(3.26) (1.80) (3.25) (2.15)

Q5 0.0096 0.0027 Q5 0.0097 0.0028

(3.47) (2.46) (3.30) (2.10)

Q5-Q1 0.0058 0.0069 Q5-Q1 0.0049 0.0065

(2.51) (3.33) (2.14) (2.70)
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Figure 1 Variance Risk Premium, Implied and Realized Variances

This figure plots variance risk premium or the implied-expected variance difference (top panel), implied

variance (middle panel), and forecasted realized variance (bottom panel) for the S&P500 market index from

January 1990 to December 2010. The variance risk premium is based on the realized variance forecast from

lagged implied and realized variances. The shaded areas represent NBER recessions.
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Figure 2 Variance Risk Premium and GDP Growth

The figure plots the GDP growth rates (thin line) together with the variance risk premium (thick line) from

1990Q1 to 2010Q4. Both of the series are standardized to have mean zero and variance one. The shaded

areas represent NBER recessions.
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Figure 3 Relative Performance of the Conditional ICAPM with Uncertainty

This figure plots the realized monthly average excess returns on the size (top panel), book-to-market (middle

panel), and industry portfolios (bottom panel) and the cross-section of expected excess returns generated

by the Conditional CAPM with the market factor and the Conditional ICAPM with the market and VRP

factors. The results indicate superior performance of the conditional asset pricing model introduced in the

paper.
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Risk, Uncertainty, and Expected
Returns—Internet Appendix



A A Consumption-based Asset Pricing Model with Eco-

nomic Uncertainty

To guide our economic interpretation of the empirical finding in the main paper, we follow the

strategy of Campbell (1993, 1996) to substitute unobservable consumption-based measures

with observable market-based measures. Under a structural model with recursive preference

and consumption uncertainty (Bollerslev, Tauchen, and Zhou, 2009), one can show that

the model-implied market compensations for risk and uncertainty are both positive, under

reasonable parameter settings that agents are more risk averse than the log utility and that

agents prefer an early resolution of economic uncertainty. In essence, the two risk factors—

market return and variance risk premium—span all systematic variations in any risky assets.

A.1 An Economic Model of Return-Uncertainty Tradeoff

The representative agent in the economy is endowed with Epstein-Zin-Weil recursive prefer-

ences, and has the value function Vt of her life-time utility as

Vt =
[

(1− δ)C
1−γ

θ

t + δ
(

Et

[

V 1−γ
t+1

])

1

θ

]

θ
1−γ

, (A1)

where Ct is consumption at time t, δ denotes the subjective discount factor, γ refers to the

coefficient of risk aversion, θ = 1−γ

1− 1

ψ

, and ψ equals the intertemporal elasticity of substitution

(IES). The key assumptions are that γ > 1, implying that the agents are more risk averse

than the log utility investors; and ψ > 1 hence θ < 0, implying that agents prefer an earlier

resolution of economic uncertainty.

Suppose that log consumption growth and its volatility follow the joint dynamics

gt+1 = µg + σg,tzg,t+1, (A2)

σ2
g,t+1 = aσ + ρσσ

2
g,t +

√
qtzσ,t+1, (A3)

qt+1 = aq + ρqqt + ϕq

√
qtzq,t+1, (A4)

where µg > 0 denotes the constant mean growth rate, σ2
g,t+1 represents time-varying volatility

in consumption growth, and qt introduces the volatility uncertainty process in the consump-
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tion growth process.1

Let wt denote the logarithm of the price-dividend or wealth-consumption ratio, of the

asset that pays the consumption endowment, {Ct+i}∞i=1; and conjecture a solution for wt as

an affine function of the state variables, σ2
g,t and qt,

wt = A0 + Aσσ
2
g,t + Aqqt. (A5)

One can solve for the coefficients A0, Aσ and Aq using the standard Campbell and Shiller

(1988) approximation rt+1 = κ0 + κ1wt+1 − wt + gt+1, where rt+1 is the return on the asset

that pays the consumption endowment flow. The restrictions that γ > 1 and ψ > 1, hence

θ < 0, imply that the impact coefficients associated with both volatility and uncertainty

state variables are negative; i.e., Aσ < 0 and Aq < 0. So if consumption risk and economic

uncertainty are high, the price-dividend ratio is low, hence risk premia are high.

Given the solution of price-dividend ratio, and assume that dividend equals consumption,

the model-implied premium of the market portfolio can be shown as

E [Rm,t+1|Ωt] = γσ2
g,t + (1− θ)κ21(A

2
qϕ

2
q + A2

σ)qt. (A6)

The premium is composed of two separate terms. The first term, γσ2
g,t, is compensating for

the classic consumption risk as in a standard consumption-based CAPM model. The second

term, (1 − θ)κ21(A
2
qϕ

2
q + A2

σ)qt, represents a true premium for variance risk or economic

uncertainty. The restrictions that γ > 1 and ψ > 1 implies that the uncertainty or variance

risk premium is always positive by construction.

The conditional variance of the time t to t + 1 market return, σ2
m,t ≡ Vart(rt+1), can be

shown as σ2
m,t = σ2

g,t + κ21
(

A2
σ + A2

qϕ
2
q

)

qt. The variance risk premium can be defined as the

difference between risk-neutral and objective expectations of the return variance,2

V RPt ≡ EQ
[

σ2
m,t+1|Ωt

]

− EP
[

σ2
m,t+1|Ωt

]

≈ (θ − 1)κ1
[

Aσ + Aqκ
2
1

(

A2
σ + A2

qϕ
2
q

)

ϕ2
q

]

qt.

1The parameters satisfy aσ > 0, aq > 0, |ρσ| < 1, |ρq| < 1, ϕq > 0; and {zg,t}, {zσ,t} and {zq,t} are iid
Normal(0, 1) processes jointly independent with each other.

2The approximation comes from the fact that the model-implied risk-neutral conditional expectation
cannot be computed in closed form, and a log-linear approximation is applied.
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Moreover, provided that θ < 0, Aσ < 0, and Aq < 0, as would be implied by the agents’

preference of an earlier resolution of economic uncertainty, this difference between the risk-

neutral and objective expectations of return variances is guaranteed to be positive.

However, due to the measurement difficulty in consumption data and its volatility, we

will use market return volatility and variance risk premium to substitute fundamental risk

and uncertainty that are harder to pin down accurately (Campbell, 1993),

E [Rm,t+1|Ωt] = γσ2
m,t +

(1− θ − γ)κ21(A
2
σ + A2

qϕ
2
q)

(θ − 1)κ1
[

Aσ + Aqκ21
(

A2
σ + A2

qϕ
2
q

)

ϕ2
q

]V RPt . (A7)

Therefore the risk-return trade-off identified by γ is always positive. However, the uncertainty-

return trade-off depends on the sign of (1−θ−γ). Under typical preference parameter setting,

as in Bansal and Yaron (2004) and Bollerslev, Tauchen, and Zhou (2009), θ tends to be a

large negative number, and one always has (1 − θ − γ) > 0. In other words, the model

implied uncertainty-return tradeoffs should always be positive.

Campbell (1993) shows that, in an intertemporal CAPM setting (Merton, 1973), the

appropriate choices for factors relevant in cross-sectional asset pricing tests should be the

current market return and any variables that have information about the future market

returns. Given the recent evidence that variance risk premium (VRP) possesses a significant

forecasting power for short-term market returns (see, e.g., Bollerslev, Tauchen, and Zhou,

2009, among others), it is natural to postulate the following cross-sectional asset pricing

implication along the lines of Campbell, Giglio, Polk, and Turley (2012):

E [Ri,t+1|Ωt] = A · cov [Ri,t+1, Rm,t+1|Ωt] + B · cov [Ri,t+1, ht+1|Ωt] , (A8)

where the model implied coefficients A = γ > 0 and B = −θ/ψ > 0, and we approximate

the intertemporal hedging component ht with variance risk premium V RPt. The intuition

for the positive slope coefficient B, is that investors dislike the reduced ability to hedge

against a deterioration in the investment opportunity captured by V RPt—which positively

predicts future market returns. Therefore investors require a higher return premium to hold

the assets or stocks that positively covary with V RPt (Campbell, 1996).

4



A.2 Calibrating Uncertainty-Return Tradeoff

To give some empirical guidance on how such a modeling framework with two risk drivers—

consumption risk and volatility uncertainty—can play out in empirically testing the time-

series and cross-sectional stock returns, we provide some calibration evidence based on the

model parameter settings used by Bollerslev, Tauchen, and Zhou (2009, or BTZ2009 for

short) focusing on equity return predictability and Zhou (2010) also considering bond return

and credit spread predictability. As shown in Table I, consistent with the analytical charac-

terization above, the risk-return trade-off coefficient or A should be equal to the risk-aversion

coefficient, which is 10 or 2 under the two model parameter choices. On the other hand,

the uncertainty-return coefficient or B should be equal to 10.24 or 0.08, which is a highly

non-linear function of both the underlying preference and structural parameters. The model

implied uncertainty-return trade-off is positive.

More importantly, the positive relationship between variance risk premium and excess

market return is fairly robust. There are two key preference parameters—intertemporal

elasticity of substitution (IES) and risk aversion coefficient that may materially affect the

sign and magnitude of the return-uncertainty trade-off. However, as shown in the top two

panels of Figure 1, as long as IES—ψ is larger than one and risk aversion—γ is larger than

one, the model-implied linkage between return and uncertainty should remain positive.

In contrast, when agents prefer a late resolution of uncertainty or 0 < ψ < 1 (bottom left

panel), the model implied return-uncertainty trade-off swings between positive and negative

values with a bifurcation towards infinities near ψ = 0.5. Similarly, if agents are less risk

averse than log investor or 0 < γ < 1 (bottom right panel), the uncertainty-return trade-

off also swings between large positive and negative values near γ = 0.67. The empirical

implication is rather sharp—if we find that the exposures to variance risk premium are

positively priced in stock returns, it would be consistent with our assumptions that both

IES and risk aversion are larger than one—as sufficient conditions.

There is a long debate about whether the intertemporal elasticity of substitution or IES is

larger than one. As emphasized by Beeler and Campbell (2009), a high IES—around 1.5—is
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key to the success of long-run risks model (Bansal and Yaron, 2004). Although earlier time

series evidences (Hall, 1988; Campbell, 1999) suggest a small IES close to zero, the regression

estimates can be downward biased if consumption volatility is time-varying (Bansal, Kiku,

and Yaron, 2007). On the other hand, financial market implications on IES being less than

one are found by Kandel and Stambaugh (1991) and Liu, Zhang, and Fan (2011).

Our empirical approach on estimating the risk-return and uncertainty-return trade-off

from time-series and cross-section of stock returns provides an alternative reduced-form angle

to judge whether IES is bigger than one. Our empirical finding of a positive uncertainty-

return trade-off is consistent with an IES larger than one without imposing parametric

restrictions, nor do we rely on the Euler equations or GMM estimation as in Bansal, Kiku,

and Yaron (2009) and Chen, Favilukis, and Ludvigson (2011).

B Equity Portfolios

In addition to the 1990-2010 period, Table II presents the monthly raw return and CAPM

Alpha differences between high-return (long) and low-return (short) equity portfolios (size,

book-to-market, and industry) for the sample periods 1926-2010 and 1963-2010. For the

sample period July 1926 – December 2010, the average return difference between the Small

and Big portfolios is 0.60% per month with the OLS t-statistic of 2.49 and the Newey-West

(1987) t-statistic of 2.36, implying that small stocks on average generate higher returns

than big stocks. The CAPM Alpha (or abnormal return) for the long-short size portfolio

is 0.27% per month with the OLS t-statistic of 1.22 and the Newey-West t-statistic of 1.38.

This economically and statistically insignificant Alpha indicates that the static CAPM does

explain the size effect for the 1926-2010 period.

For the ten book-to-market portfolios, the average return difference between the Value

and Growth portfolios is 0.53% per month with the OLS t-statistic of 2.52 and the Newey-

West t-statistic of 2.46, implying that value stocks on average generate higher returns than

growth stocks (the so-called value premium). Similar to our findings for the size portfolios,

the unconditional CAPM can explain the value premium for the 1926-2010 period; the CAPM
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Alpha (or abnormal return) for the long-short book-to-market portfolio is only 0.24% per

month with the OLS t-statistic of 1.25 and the Newey-West t-statistic of 1.26.

The last six rows in Table II report average return differences and CAPM Alphas for

the industry portfolios (10-, 17-, 30-, 38-, 48-, and 49-industry portfolios). For the long

sample period of 1926-2010, only the extreme portfolios of 48 and 49 industries generate

significant return differences, whereas the average return differences for the high-return and

low-return portfolios of 10, 17, 30, and 38 industries are either statistically insignificant

or marginally significant. For 48- and 49-industry portfolios of Kenneth French, “Aero”

industry has the highest average monthly return, whereas “Other” industry has the lowest

return, yielding an average monthly return difference of 66 basis points with the Newey-West

t-statistic of 2.55.3 More importantly, the static CAPM cannot explain the industry effect;

the CAPM alpha (or abnormal return) for the “Aero-Other” arbitrage portfolio is 0.50%

per month and statistically significant with the t-statistic of 2.04. Although the average

return differences between high-return and low-return portfolios of 30 and 38 industries

are marginally significant, the CAPM Alphas are found to be significant. For 30-industry

portfolios, the average return difference between “Coal” and “Other” industries is 0.51% per

month and marginally significant with the t-statistic of 1.71.4 However, the CAPM Alpha

for the “Coal-Other” arbitrage portfolio is 0.65% per month with the t-statistic of 2.28. For

38-industry portfolios, the average return difference between “Oil” and “Whlsl” industries

is 0.42% per month and marginally significant with the t-statistic of 1.85.5 However, the

CAPM Alpha for the “Oil-Whlsl” arbitrage portfolio is 0.49% per month with the t-statistic

of 2.06.

3According to the 48- and 49-industry definitions and four-digit SIC codes reported at Kenneth French’s
online data library, “Aero” industry includes Aircraft & parts (3720-3720), Aircraft (3721-3721), Aircraft
engines, engine parts (3723-3724), Aircraft parts (3725-3725), and Aircraft parts (3728-3729). “Other”
industry includes Sanitary services (4950-4959), Steam, air conditioning supplies (4960-4961), Irrigation
systems (4970-4971), and Cogeneration - SM power producer (4990-4991).

4According to the 30-industry definitions and four-digit SIC codes reported at Kenneth French’s online
data library, “Coal” industry includes Bituminous coal (1200-1299). “Other” industry includes Sanitary
services (4950-4959), Steam, air conditioning supplies (4960-4961), Irrigation systems (4970-4971), and Co-
generation - SM power producer (4990-4991).

5According to the 38-industry definitions and four-digit SIC codes reported at Kenneth French’s online
data library, “Oil” industry includes Oil and Gas Extraction (1300-1399) and “Whlsl” industry includes
Wholesale (5000-5199).
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Fama and French (1992) identify economically and statistically significant value premium

for the post-1963 period. Moreover, Fama and French (1992) find that the post-1963 value

premium is not explained by the CAPM. However, Ang and Chen (2007) provide evidence

that the value premium is captured by the CAPM for the sample period of 1926-1963. They

also show that the conditional CAPM with stochastic betas can explain the return differences

between value and growth portfolios even for the post-1963 period. Fama and French (2006)

indicate that the performance of the CAPM with regard to the book-to-market effect varies

across subperiods. We investigate the significance of size, book-to-market, and industry

effects for the sample that generated heated debate on value premium. We compute the

average return differences and Alphas for the subsample period of July 1963 – December

2010.

As presented in Table II, the average return difference between the Small and Big port-

folios as well as the CAPM Alpha for “Small-Big” arbitrage portfolio are positive, but they

are economically and statistically insignificant, indicating that the size effect disappears

for the post-1963 period. Similar to the findings of Ang and Chen (2007) and Fama and

French (2006), value premium remains economically and statistically significant for the sam-

ple period July 1963 – December 2010; the average raw and risk-adjusted return differences

between the Value and Growth portfolios is 0.55% per month and statistically significant,

implying that value stocks on average generate higher returns than growth stocks and this

value premium cannot be explained by the static CAPM.

The results for the industry portfolios are similar for the post-1963 period. The high-

return and low-return portfolios of 30 and 38 industries generate marginally significant, 48

and 49 industries generate significant return differences, whereas the average return differ-

ences for the high-return and low-return portfolios of 10 and 17 industries are insignificant.

Specifically, for 30-, 48- and 49-industry portfolios of Kenneth French, “Coal” industry has

the highest average monthly return, whereas “Other” industry has the lowest return, yield-

ing an average raw and risk-adjusted return differences of 79 to 92 basis points per month

and statistically significant. The unconditional CAPM cannot explain these industry ef-

fects either. For 38-industry portfolios, the average return and Alpha differences between
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“Smoke” and “Govt” industries are about 1.06% and 1.07% per month and significant with

the Newey-West t-statistics of 2.61 and 2.69, respectively.6

C DCC Model of Engle (2002)

We estimate the conditional covariances of each equity portfolio with the market portfolio

and V RP (σim,t+1 , σi,V RP,t+1 ) based on the mean-reverting DCC model of Engle (2002).

Engle defines the conditional correlation between two random variables r1 and r2 that each

has zero mean as

ρ12,t =
Et−1 (r1,t · r2,t)

√

Et−1

(

r21,t
)

· Et−1

(

r21,t
)

, (A9)

where the returns are defined as the conditional standard deviation times the standardized

disturbance:

σ2
i,t = Et−1

(

r2i,t
)

, ri,t = σi,t · ui,t, i = 1, 2 (A10)

where ui,t is a standardized disturbance that has zero mean and variance one for each series.

Equations (A9) and (A10) indicate that the conditional correlation is also the conditional

covariance between the standardized disturbances:

ρ12,t =
Et−1 (u1,t · u2,t)

√

Et−1

(

u21,t
)

· Et−1

(

u21,t
)

= Et−1 (u1,t · u2,t) . (A11)

The conditional covariance matrix of returns is defined as

Ht = Dt · ρt ·Dt, where Dt = diag
{√

σ2
i,t

}

, (A12)

where ρt is the time-varying conditional correlation matrix

Et−1 (ut · u′t) = D−1
t ·Ht ·D−1

t = ρt, where ut = D−1
t · rt. (A13)

Engle (2002) introduces a mean-reverting DCC model:

ρij,t =
qij,t√

qii,t · qjj,t
, (A14)

6According to the 38-industry definitions and four-digit SIC codes reported at Kenneth French’s online
data library, “Smoke” industry includes Tobacco Products (2100-2199) and “Govt” industry includes Public
Administration (9000-9999).
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qij,t = ρ̄ij + a1 · (ui,t−1 · uj,t−1 − ρ̄ij) + a2 · (qij,t−1 − ρ̄ij) (A15)

where ρ̄ij is the unconditional correlation between ui,t and uj,t. Equation (A15) indicates

that the conditional correlation is mean reverting towards ρ̄ij as long as a1 + a2 < 1.

Engle (2002) assumes that each asset follows a univariate GARCH process and writes

the log likelihood function as:

L = −1

2

T
∑

t=1

(

n log(2π) + log |Ht|+ r′tH
−1
t rt

)

= −1

2

T
∑

t=1

(

n log(2π) + 2 log |Dt|+ r′tD
−1
t D−1

t rt − u′tut + log |ρt|+ u′tρ
−1
t ut

)

. (A16)

As shown in Engle (2002), letting the parameters in Dt be denoted by θ and the additional

parameters in ρt be denoted by ϕ, equation (A16) can be written as the sum of a volatility

part and a correlation part:

L(θ, ϕ) = LV (θ) + LC(θ, ϕ). (A17)

The volatility term is

LV (θ) = −1

2

T
∑

t=1

(

n log(2π) + log |Dt|2 + r′tD
−2
t rt

)

, (A18)

and the correlation component is

LC(θ, ϕ) = −1

2

T
∑

t=1

(

log |ρt|+ u′tρ
−1
t ut − u′tut

)

. (A19)

The volatility part of the likelihood is the sum of individual GARCH likelihoods:

LV (θ) = −1

2

T
∑

t=1

n
∑

i=1

(

log(2π) + log
(

σ2
i,t

)

+
r2i,t
σ2
i,t

)

, (A20)

which is jointly maximized by separately maximizing each term. The second part of the like-

lihood is used to estimate the correlation parameters. The two-step approach to maximizing

the likelihood is to find

θ̂ = argmax{LV (θ)}, (A21)

and then take this value as given in the second stage:

ϕ̂ = argmax{LC(θ̂, ϕ)}. (A22)
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D System of Regression Equations

Consider a system of n equations, of which the typical ith equation is

yi = Xiβi + ui, (A23)

where yi is a N × 1 vector of time-series observations on the ith dependent variable, Xi is a

N × ki matrix of observations of ki independent variables, βi is a ki × 1 vector of unknown

coefficients to be estimated, and ui is a N×1 vector of random disturbance terms with mean

zero. Parks (1967) proposes an estimation procedure that allows the error term to be both

serially and cross-sectionally correlated. In particular, he assumes that the elements of the

disturbance vector u follow an AR(1) process:

uit = ρuit−1 + εit; ρi < 1, (A24)

where εit is serially independently but contemporaneously correlated:

Cov (εitεjt) = σij , for any i, j, and Cov (εitεjs) = 0, for s 6= t (A25)

Equation (A23) can then be written as

yi = Xiβi + Piui, (A26)

with

Pi =























(1− ρ2i )
−1/2

0 0 ... 0

ρi (1− ρ2i )
−1/2

1 0 ... 0

ρ2i (1− ρ2i )
−1/2

ρ 1 ... 0
.
.
.

ρN−1
i (1− ρ2i )

−1/2
ρN−2 ρN−3 ... 1























. (A27)

Under this setup, Parks (1967) presents a consistent and asymptotically efficient three-

step estimation technique for the regression coefficients. The first step uses single equation

regressions to estimate the parameters of autoregressive model. The second step uses single
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equation regressions on transformed equations to estimate the contemporaneous covariances.

Finally, the Aitken estimator is formed using the estimated covariance,

β̂ =
(

XTΩ−1X
)−1

XTΩ−1y, (A28)

where Ω ≡ E[uuT ] denotes the general covariance matrix of the innovation. In our applica-

tion, we use the aforementioned methodology with the slope coefficients restricted to be the

same for all equity portfolios and individual stocks. In particular, we use the same three-step

procedure and the same covariance assumptions as in equations (A24) to (A27) to estimate

the covariances and to generate the t-statistics for the parameter estimates.

E DCC with Asymmetric GARCH

Because the conditional variance and covariance of stock market returns are not observable,

different approaches and specifications used in estimating the conditional variance and co-

variance could lead to different conclusions. We have so far used the bivariate GARCH(1,1)

model of Bollerslev (1986) in equations (18)-(19) and (24)-(25) to obtain conditional variance

and covariance estimates. In this section, we investigate whether changing these specifica-

tions influences our main findings.

The current volatility in the GARCH(1,1) model is defined as a symmetric, linear function

of the last period’s unexpected news and the last period’s volatility. Since, in a symmetric

GARCH process, positive and negative information shocks of the same magnitude produce

the same amount of volatility, the symmetric GARCH model cannot cope with the skewness

of stock return distribution. If a negative return shock causes more volatility than a positive

return shock of the same size, the symmetric GARCH model underpredicts the amount

of volatility following negative shocks and overpredicts the amount of volatility following

positive shocks. Furthermore, if large return shocks cause more volatility than a quadratic

function allows, then the symmetric GARCH model underpredicts volatility after a large

return shock and overpredicts volatility after a small return shock.

In this section we use an asymmetric GARCH model of Glosten, Jagannathan, and

Runkle (1993) that explicitly takes account of skewed distributions and allows good news
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and bad news to have different impacts on the conditional volatility forecasts. To test whether

such variations in the variance forecasting specification alter our conclusion, we re-estimate

the DCC-based conditional covariances using the following alternative specification:

Ri,t+1 = αi
0 + αi

1Ri,t + εi,t+1

Rm,t+1 = αm
0 + αm

1 Rm,t + εm,t+1

V RPt+1 = αV RP
0 + αV RP

1 V RPt + εV RP,t+1

Et

[

ε2i,t+1

]

≡ σ2
i,t+1 = βi

0 + βi
1ε

2
i,t + βi

2σ
2
i,t + βi

3ε
2
i,tD

−
i,t

Et

[

ε2m,t+1

]

≡ σ2
m,t+1 = βm

0 + βm
1 ε

2
m,t + βm

2 σ
2
m,t + βm

3 ε
2
m,tD

−
m,t

Et

[

ε2V RP,t+1

]

≡ σ2
V RP,t+1 = βV RP

0 + βV RP
1 ε2V RP,t + βV RP

2 σ2
V RP,t + βV RP

3 ε2V RP,tD
−
V RP,t

Et [εi,t+1εm,t+1] ≡ σim,t+1 = ρim,t+1 · σi,t+1 · σm,t+1

Et [εi,t+1εV RP,t+1] ≡ σi,V RP,t+1 = ρi,V RP,t+1 · σi,t+1 · σV RP,t+1

Et [εm,t+1εV RP,t+1] ≡ σm,V RP,t+1 = ρm,V RP,t+1 · σm,t+1 · σV RP,t+1

(A29)

where D−
i,t, D

−
m,t, and D

−
V RP,t are indicator functions that equals one when εi,t+1, εm,t+1, and

εV RP,t+1 are negative and zero otherwise. The indicator function generates an asymmetric

GARCH effect between positive and negative shocks. ρim,t+1, ρi,V RP,t+1, and ρm,V RP,t+1 are

the time-t expected conditional correlations estimated using the mean-reverting DCC model

of Engle (2002).

A notable point in Table III is that the main findings from an asymmetric GARCH

specification of the conditional covariances are very similar to those reported in Table 2.

Specifically, the risk aversion coefficients are estimated to be positive and highly significant

for all equity portfolios; A is in the range of 2.53 to 3.54 with the t-statistics ranging from

2.58 to 3.11, implying a significantly positive link between expected return and risk. Sim-

ilar to our results from GARCH(1,1) specification, asymmetric GARCH model of Glosten,

Jagannathan, and Runkle (1993) yields positive and significant coefficient estimates on the

covariance between equity portfolios and the variance risk premia. Specifically, the uncer-

tainty aversion coefficients (B) are in the range of 0.0054 to 0.0075 with the t-statistics

between 2.68 and 3.30. These results show that equity portfolios that are highly correlated

with uncertainty (proxied by VRP) carry a significant premium relative to portfolios that

are uncorrelated or lowly correlated with VRP.

With this alternative covariance specification, we also examine the empirical validity of

the conditional asset pricing model by testing the joint hypothesis. As shown in Table III,

the Wald1 statistics for the size, book-to-market, and industry portfolios are, respectively,
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16.91, 7.89, and 14.41 with the corresponding p-values of 0.11, 0.72, and 0.21. The signifi-

cantly positive risk and uncertainty aversion coefficients and the insignificant Wald1 statistics

indicate that the two-factor model explains the time-series and cross-sectional variation in

equity portfolios. Finally, we investigate whether the model with asymmetric GARCH spec-

ification explains the return spreads between Small and Big; Value and Growth; and HiTec

and Telcm portfolios. The last row in Table III reports Wald2 statistics from testing the

equality of conditional alphas for high-return and low-return portfolios (H0 : α1 = α10). For

the size, book-to-market, and industry portfolios, the Wald2 statistics provide no evidence

for a significant conditional alpha for “Small-Big”, “Value-Growth”, and “HiTec-Telcm”

arbitrage portfolios. Overall, the DCC-based conditional covariances from the asymmet-

ric GARCH model captures the time-series and cross-sectional variation in returns on size,

book-to-market, and industry portfolios and generates significantly positive risk-return and

uncertainty-return tradeoffs.
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Table I Model Calibration Parameter Setting

This table reports the calibration parameter values for the stochastic volatility-of-volatility model used in this
paper. BTZ2009 refers to the calibration setting of Bollerslev, Tauchen, and Zhou (2009), with an emphasis
on equity risk premium and its short-run predictability, while the setting of Zhou (2010) also considers bond
risk premium and credit spread and their forecastability from variance risk premium. The Campbell-Shiller
linearization constants are κ1 = 0.9 and κ0 = 0.3251.

Calibration Parameters BTZ2009 Zhou (2010)

Preference Parameters: δ = 0.997 δ = 0.997

γ = 10 γ = 2

ψ = 1.5 ψ = 1.5

Endowment Parameters: µg = 0.0015 µg = 0.0015

aσ = 1.34× 10−6 aσ = 0.002

ρσ = 0.978 ρσ = 0.1

aq = 2× 10−7 aq = 1.4× 10−5

ρq = 0.8 ρq = 0.98

ϕq = 0.001 ϕq = 0.008

Risk-Return Trade-off (A) 10 2

Uncertainty-Return Trade-off (B) 10.24 0.08
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Table II Monthly Raw Returns and CAPM Alphas for the Long-Short Equity Portfolios

This table presents the monthly raw return and CAPM Alpha differences between high-return (long) and low-return (short) equity portfolios. The results are reported for the
size, book-to-market (BM), and industry portfolios for the sample periods July 1926 – December 2010, July 1963 – December 2010, and January 1990 – December 2010. The
OLS t-statistics are reported in parentheses. The Newey-West t-statistics are given in square brackets.

July 1926 – December 2010 July 1963 – December 2010 January 1990 – December 2010

Portfolio Long-Short Return Diff. Alpha Portfolio Long-Short Return Diff. Alpha Portfolio Long-Short Return Diff. Alpha

10 Size Small-Big 0.60% 0.27% 10 Size Small-Big 0.38% 0.29% 10 Size Small-Big 0.40% 0.35%

(2.49) (1.22) (1.58) (1.41) (1.22) (1.06)

[2.36] [1.38] [1.81] [1.26] [1.13] [0.98]

10 BM Value-Growth 0.53% 0.24% 10 BM Value-Growth 0.55% 0.55% 10 BM Value-Growth 0.29% 0.28%

(2.52) (1.25) (2.77) (2.76) (0.92) (0.86)

[2.46] [1.26] [2.48] [2.40] [0.79] [0.71]

10 Industry Durbl-Telcm 0.27% -0.09% 10 Industry Utils-Enrgy 0.28% 0.17% 10 Industry HiTech-Telcm 0.56% 0.31%

(1.44) (-0.56) (1.50) (0.93) (1.55) (0.92)

[1.31] [-0.54] [1.50] [0.91] [1.64] [0.95]

17 Industry Cars-Other 0.28% 0.07% 17 Industry Mines-Durbl 0.43% 0.45% 17 Industry Mines-Durbl 0.56% 0.61%

(1.65) (0.44) (1.54) (1.58) (1.15) (1.23)

[1.55] [0.44] [1.48] [1.51] [1.16] [1.22]

30 Industry Coal-Other 0.51% 0.65% 30 Industry Coal-Other 0.82% 0.79% 30 Industry Coal-Other 1.66% 1.54%

(1.79) (2.26) (2.14) (2.05) (2.25) (2.08)

[1.71] [2.28] [1.95] [1.84] [2.12] [1.90]

38 Industry Oil-Whlsl 0.42% 0.49% 38 Industry Smoke-Govt 1.06% 1.07% 38 Industry Mines-Govt 1.34% 1.45%

(1.90) (2.18) (2.38) (2.40) (1.48) (1.59)

[1.85] [2.06] [2.61] [2.69] [1.75] [1.90]

48 Industry Aero-Other 0.66% 0.50% 48 Industry Coal-Other 0.92% 0.92% 48 Industry Coal-Other 1.79% 1.71%

(2.66) (2.02) (2.24) (2.25) (2.38) (2.26)

[2.55] [2.04] [2.06] [2.04] [2.33] [2.13]

49 Industry Aero-Other 0.66% 0.50% 49 Industry Coal-Other 0.92% 0.92% 49 Industry Coal-Other 1.79% 1.71%

(2.66) (2.02) (2.24) (2.25) (2.38) (2.26)

[2.55] [2.04] [2.06] [2.04] [2.33] [2.13]
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Table III Results from Asymmetric GARCH Model

This table reports the portfolio-specific intercepts and the common slope estimates from the following panel regression:

Ri,t+1 = αi +A · Covt (Ri,t+1, Rm,t+1) +B · Covt (Ri,t+1, V RPt+1) + εi,t+1

Rm,t+1 = αm +A · V art (Rm,t+1) +B · Covt (Rm,t+1, V RPt+1) + εm,t+1

where the conditional variance and covariances are estimated using the asymmetric GARCH model of Glosten, Jagannathan,
and Runkle (1993). The parameters and their t-statistics are estimated using the monthly excess returns on the market
portfolio and the ten decile size, book-to-market, and industry portfolios for the sample period from January 1990 to December
2010. The alphas (αi) are reported for each equity portfolio and the t-statistics are presented in parentheses. The t-statistics
are adjusted for heteroskedasticity and autocorrelation for each series and cross-correlations among the portfolios. The last
four rows, respectively, show the common slope coefficients (A and B), the Wald1 statistics from testing the joint hypothesis
H0 : α1 = α2 = ...αm = 0 , and the Wald2 statistics from testing the equality of Alphas for high-return and low-return
portfolios (Small vs. Big; Value vs. Growth; and HiTec vs. Telcm). The p-values of Wald1 and Wald2 statistics are given in
square brackets.

Size αi, αm BM αi, αm Industry αi, αm

Small 0.0052 Growth 0.0035 NoDur 0.0051

(1.23) (0.87) (1.94)

2 0.0037 2 0.0047 Durbl 0.0028

(0.85) (1.35) (0.57)

3 0.0040 3 0.0052 Manuf 0.0055

(0.99) (1.55) (1.61)

4 0.0030 4 0.0064 Enrgy 0.0064

(0.75) (1.85) (1.85)

5 0.0038 5 0.0056 HiTec 0.0029

(0.97) (1.71) (0.52)

6 0.0037 6 0.0050 Telcm 0.0004

(1.05) (1.48) (0.11)

7 0.0041 7 0.0057 Shops 0.0036

(1.19) (1.76) (1.04)

8 0.0034 8 0.0058 Hlth 0.0043

(0.97) (1.74) (1.37)

9 0.0036 9 0.0066 Utils 0.0042

(1.11) (1.92) (1.58)

Big 0.0012 Value 0.0081 Other 0.0030

(0.38) (1.88) (0.81)

Market 0.0018 Market 0.0033 Market 0.0028

(0.57) (1.20) (0.82)

A 3.2927 A 2.5303 A 3.5369

(3.11) (2.62) (2.58)

B 0.0054 B 0.0060 B 0.0075

(3.12) (2.68) (3.30)

Wald1 16.91 Wald1 7.89 Wald1 14.41

[0.11] [0.72] [0.21]

Wald2 1.48 Wald2 1.99 Wald2 0.46

[0.22] [0.16] [0.50]
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Figure 1 Return-Uncertainty Trade-off Coefficient

The figure shows the model-implied relationship between market excess return and variance risk premium

(VRP), or the return-uncertainty trade-off coefficient (B) as implied by the model. The top panels show how

the value of B changes with respect to the intertemporal elasticity of substitution (IES) ψ = [1, 10] (left)

and the risk aversion coefficient γ = [1, 2] (right), and the lower two panels with respect to ψ = [0, 1] (left)

and γ = [0, 1] (right). The benchmark calibration setting is based on Zhou (2010) and specified in Table I.
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