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Abstract

We solve a class of identification problems for nonparametric and semiparametric
models when the endogenous covariate is discrete with unbounded support. Then
we proceed with an approach that resolves a polynomial basis problem for the above
class of discrete distributions, and for the distributions given in the sufficient condition
for completeness in Newey and Powell (2003). Thus, in addition to extending the
set of econometric models for which nonparametric or semiparametric identification
of structural functions is guaranteed to hold, our approach provides a natural way
of estimating these functions. Finally, we extend our polynomial basis approach to
Pearson-like and Ord-like families of distributions.
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1 Introduction

In this paper we extend the set of econometric models for which nonparametric or semipara-
metric identification of structural functions is guaranteed to hold by showing completeness
when the endogenous covariate is discrete with unbounded support. Note that the case of
discrete endogenous covariate X with unbounded support is not covered by the sufficiency
condition given in [6]. In addition, using the theory of differential equations we develop a
novel orthogonal polynomial basis approach for a large class of the distributions given in
Theorem 2.2 in [6], and in the case of discrete endogenous covariate X for which the iden-
tification problem is solved in this paper. Our approach is new in economics and provides
a natural link between identification and estimation of structural functions. We also discuss
how our polynomial basis results can be extended to the case when the conditional distri-
bution of X|Z belongs to either the modified Pearson or modified Ord family. Finally, as
will be remarked following formula (3) in the beginning of Section 3, our orthogonal poly-
nomial approach in many cases provides a certain L2-completeness condition that itself can
be used as an alternative approach for obtaining identification results. Thus, our orthogonal
polynomial approach extends the class of problems where identification can be solved via
the L2-completeness concept we introduce.

Our approach is motivated by the form of the conditional density (either with respect
to Lebesgue or counting measure) of covariates given instruments. Using the form of this
density function we can define an operator (a type of Stein operator) whose eigenfunctions
are orthogonal polynomials (in covariates) under certain sufficient conditions. One could use
the eigenfunctions of the Stein operator to approximate the structural functions of interest
in such models. Since the conditional expectations of these orthogonal basis functions given
instruments are known up to a certain function of the instruments (namely, they are poly-
nomials in µ(Z), which will be defined below), this approach is likely to simplify estimation.

Completeness, L2-completeness, and bounded completeness1 are often used in nonpara-
metric and semiparametric models to obtain identification of structural parameters of inter-
est. A related but different L2-completeness condition is studied in [1] and the references
therein. In their L2-completeness condition the functions considered are square integrable
with respect to the distribution of covariates and included instruments whereas in our condi-
tion the functions considered have to be square integrable with respect to a different weight
function that depends on covariates and included instruments. Also the methods and goals
of [1] and our paper are different.

Here is the main identification result of this paper. We let X denote the endogenous random
variable and Z = (Z1, Z2) denote the instrumental variables.

Theorem 1. Let X be a discrete random variable, with conditional distribution of X|Z given
by

P (X = x|Z = z) := p(x|z) = t(z)s(x, z1)
d∏
j=1

[µj(z)−mj]
τj(x,z1) τ(x, z1) ∈ Zd+,

1See for example [2] or [3] for a discussion on bounded completeness.
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where t(z) > 0, s(x, z1) > 0, τ(x, z1) = (τ1(x, z1), . . . , τd(x, z1)) is one-to-one in x, and the
support of µ(Z) = (µ1(Z), . . . , µd(Z)) given Z1 contains a non-trivial open set in Rd, and
µj(Z) > mj (Z − a.s.) for each j = 1, . . . , d. Then

E[g(X,Z1)|Z1, Z2] = 0 Z − a.s. implies g(X,Z1) = 0 (X,Z1)− a.s.

The above theorem is a discrete counterpart to Theorem 2.2 in [6], where it was shown
that if with probability one conditional on Z, the distribution of X is absolutely continuous
w.r.t. Lebesgue measure, and its conditional density is given by

fX|Z(x|z) = t(z)s(x, z1) exp [µ(z) · τ(x, z1)], (1)

where t(z) > 0, s(x, z1) > 0, τ(x, z1) is one-to-one in x, and the support of µ(Z) given Z1 con-
tains a non-trivial open set, then for each g(x, z1) with finite expectation E[g(X,Z1)|Z] = 0
(Z − a.s.) implies that g(X,Z1) = 0 (X,Z1)− a.s.

The condition requiring the support of µ(Z) given Z1 to contain a nontrivial open set in
Rd in both our Theorem 1 and Theorem 2.2 in [6] can be weakened to requiring that the
support of µ(Z) given Z1 be a countable set that is dense in a nontrivial open set in Rd.

The paper is organized as follows. The identification result of Theorem 1 is proved in
Section 2. Section 3 contains the orthogonal polynomial approach for the basis problem.
Finally, Section 4 contains the concluding remarks.

2 Identification results for a class of discrete endoge-

nous covariates X

In order to prove the identification result in Theorem 1, we need the following lemma.

Lemma 1. Let T = (T1, . . . , Td) be a d-dimensional random vector such that its support
contains an open ball Bρ(ζ) in Rd of some positive radius ρ. Then∑

j∈Zd
+

ajT
j = 0 (T − a.s.) implies aj = 0 for all j ∈ Zd+,

where for t = (t1, . . . , td) ∈ Rd and j = (j1, . . . , jd) ∈ Zd+, we define tj :=
d∏

k=1

tjkk .

Proof. Let us first consider the case of d = 1. Since
∞∑
j=0

ajT
j = 0 (T −a.s.), the real-valued

interval Bρ(ζ) = {ℑ(z) = 0, ζ − ρ < ℜ(z) < ζ + ρ}, with ℑ(z) and ℜ(z) denoting the
imaginary and real parts of z, respectively, is contained inside the ball BR(0) = {|z| < R} in

C, where R is the radius of convergence of
∞∑
j=0

ajz
j. Hence there is a unique analytic function

f(z) =
∞∑
j=0

ajz
j over BR(0) = {|z| < R}. Now since

∞∑
j=0

ajT
j = 0 (T −a.s.) and the support

of T contains Bρ(ζ) = {ℑ(z) = 0, ζ − ρ < ℜ(z) < ζ + ρ}, the function f(z) must be equal
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to zero on a dense set of points in {ℑ(z) = 0, ζ − ρ < ℜ(z) < ζ + ρ}. Hence the function
equals zero over whole {ℑ(z) = 0, ζ − ρ < ℜ(z) < ζ + ρ}, and therefore

f(z) ≡ 0 for all |z| < R

We conclude that aj = 0 for all j ∈ Z+.

For the general d-dimensional case, we use Lemma 2.4.1 in [4] in order to conclude that
Bρ(ζ) in Rd ⊂ Cd is inside the domain of convergence D ⊂ Cd for the series

∑
j∈Zd

+

ajz
j over

z ∈ Cd, and
∑
j∈Zd

+

ajz
j is analytic in D. Now, Theorem 2.4.5 in [4] implies the uniqueness of

the analytic function f(z) =
∑
j∈Zd

+

ajz
j over the following Reinhardt domain containing the

origin

{z = (z1, . . . , zd) ∈ Cd : ∃t ∈ Bρ(ζ) ⊂ Rd s.t. |z1| ≤ |t1|, . . . , |zd| ≤ |td|}

It is important to observe that f(z) is analytic in each single variable. Thus we can it-
erate the above one dimensional argument since Bρ(ζ) belongs to the support of T and∑
j∈Zd

+

ajT
j = 0 (T − a.s.). Thus obtaining f ≡ 0 on the above Reinhardt domain, and

aj = 0 for all j ∈ Zd+.

The above lemma enables us to prove the identification Theorem 1.

Proof of Theorem 1. Suppose

E[g(X,Z1)|Z1, Z2] =
∑
x

g(x, Z1)t(Z)s(x, Z1)
d∏
j=1

[µj(Z)−mj]
τj(x,Z1) = 0 (Z − a.s.)

Thus, for a.e. Z1 = z1, letting T = µ(z1, Z2)− (m1, . . . ,md) we have

∑
x

g(x, z1)s(x, z1)
d∏
j=1

T
τj(x,z1)
j = 0 (T − a.s.)

as t(z1, Z2) > 0. Since τ(x, z1) is one-to-one in x, we can re-index the above series by letting
y = τ(x, z1) as follows. ∑

y∈Zd
+

ayT
y = 0 (T − a.s.),

where ay = g(x, z1)s(x, z1) for each given y = τ(x, z1) in Zd+.

Now, since the support of µ(Z) given Z1 = z1 contains a non-trivial open set in Rd, the
conditions of Lemma 1 are satisfied, and ay = 0 for all y ∈ Zd+. Therefore

g(x, z1) = 0

for almost every (X,Z1) = (x, z1) as s(x, z1) > 0.
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3 Polynomial basis results

Consider the continuous conditional distributions fX|Z(x, z) from Theorem 2.2 in [6] with
τ(x, z1) = x ∈ Rd for simplicity. Assume that for a.e. Z1 = z1, s(x, z1) is differentiable in x,
so that fX|Z(x, z) = s(x, z1)t(z)e

µ(z)T x for x = (x1, . . . , xd)
T and µ(z) = (µ1(z), . . . , µd(z))

T .

Also denote ∇x :=
(

∂
∂x1
, . . . , ∂

∂xd

)T
to be the gradient operator w.r.t. x variable, and there-

fore ∇T
x∇x = △x to be the corresponding Laplacian operator. We differentiate fX|Z(x|z) to

obtain

∇T
x fX|Z(x|z) =

∇T
x s(x, z1)

s(x, z1)
fX|Z(x|z) + µT (z)fX|Z(x|z).

Let Ω(z) denote the support of X given Z = z. For a set B, let ∂B denote the boundary of
B. The following statement holds for almost every Z = z. For a function Q such that it is
differentiable in x, and Q(x, z1)fX|Z(x|z) = 0 for each x ∈ ∂Ω(z),2 the integration by parts
implies

E[AQ(X,Z1)|Z] = −µ(Z)TE[Q(X,Z1)|Z], (2)

where

AQ(x, z1) =
1

s(x, z1)
∇T [s(x, z1)Q(x, z1)] =

∇T
x s(x, z1)Q(x, z1)

s(x, z1)
+∇T

xQ(x, z1)

for Q such that E
[
∂
∂x
Q(X,Z1)|Z

]
<∞.

Now, let L2(Rd, s(x, z1)) denote the set of measurable g such that
∫
g2(x, z1)s(x, z1)dx <∞

for given z1. Also define the following operator3 :

AQ = A(∇xQ) =
1

s(x, z1)
∇T
x

[
s(x, z1)∇xQ(x, z1))

]
=

∇xs(x, z1) · ∇xQ(x, z1)

s(x, z1)
+△xQ(x, z1)

Then with standard boundary conditions (i.e. the boundary integral in the integration by
parts calculation must be zero), the Sturm-Liouville operator A is self-adjoint with respect to
the Hilbert space L2(Rd, s(x, z1)). Thus its eigenvalues, λj, are real, and its eigenfunctions,
Qj(x, z1), solve the following Sturm-Liouville differential equation

d∑
i=1

∂2Qj(x, z1)

∂x2i
+

1

s(x, z1)

d∑
i=1

∂s(x, z1)

∂xi

∂Qj(x, z1)

∂xi
− λjQj(x, z1) = 0 (3)

with the corresponding boundary conditions. See equation (6).

Assume that for a.e. Z1 = z1, s(x, z1) ∈ C∞(Rd) w.r.t. variable x, for each nonnegative

integer j = (j1, . . . , jd). If Qj(x, z1) = (−1)j1+···+jd

s(x,z1)
∂j1+···+jd

∂x
j1
1 ...∂x

jd
d

s(x, z1) are the orthogonal

2If ∂Ω(z) contains a point at infinity, this statement should be taken to hold in the limit. Also, as will
be seen below the Qj ’s, which are the eigenfunctions of the Stein operator satisfy this condition.

3A is the Stein-Markov operator for the distribution that has Lebesgue density equal to s(x,z1)∫
s(x,z1)dx

, and

A is the corresponding Stein operator.
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eigenfunctions in L2(Rd, s(x, z1)), then their projections

Pj(Z) := E[Qj(X)|Z] =
d∏

k=1

µk(Z)
jk = µ(Z)j

due to integration by parts under the boundary conditions requiring the corresponding
boundary integral to be zero. If in addition Qj(x) are an orthogonal basis for L2(Rd, s(x, z1)),
then the identification problem follows immediately from Lemma 1 giving us a somewhat
alternative approach to the identification result of Theorem 2.2 in [6] that works for all
g ∈ L2(Rd, s(x, z1)). In particular, using the Rodrigues’ formula for the Sturm-Liouville
boundary value problem, we can show that when

s(x, z1) = γ(z1) exp

[
α(z1)

xTx

2
+ β(z1)

]
,

with α(z1) < 0 for each z1, there is a series of eigenvalues λ0, λ1, λ2, ... that lead to solutions

{Qj(x, z1)}∞j=0, where each Qj(x, z1) = (−1)j1+···+jd

s(x,z1)
∂j1+···+jd

∂x
j1
1 ...∂x

jd
d

s(x, z1) is a multidimensional

Hermite-type orthogonal polynomial basis for L2(Rd, s(x, z1)).
4

3.1 The orthogonal polynomial basis results for continuous X

First we show how orthogonal polynomial approach works when τ(x, z1) is a one-to-one
function of x for a.e. Z1 = z1. To keep the notation simple, we are going to assume that
d = 1 in the rest of the paper (with the exception of Example 2 below), but all the results
go through when d is a finite, positive integer. When τ(x, z1) is a one-to-one function of x,

∂fX|Z(x|z)
∂x

=
∂s(x,z1)
∂x

s(x)
fX|Z(x|z) + µ(z)

∂τ(x, z1)

∂x
fX|Z(x|z).

Let

AQ(x, z1) =
∂

∂x

(
s(x, z1)Q(x, z1)

∂τ(x,z1)
∂x

)
1

s(x, z1)
=

∂Q(x,z1)
∂x

∂τ(x,z1)
∂x

+
∂s(x,z1)
∂x

s(x, z1)

Q(x, z1)
∂τ(x,z1)
∂x

−
Q(x, z1)

∂2τ(x,z1)
∂x2[

∂τ(x,z1)
∂x

]2 .

Then, assuming
Q(x,z1)fX|Z(x|z)

∂τ(x,z1)
∂x

equals 0 on ∂Ω(z) for a.e. Z = z,5 we arrive at (2) using

integration by parts. This operator A applied to the derivative of Q with respect to x gives
us the following operator

AQ(x, z1) :=
∂2Q(x,z1)

∂x2

∂τ(x,z1)
∂x

+

 ∂s(x,z1)
∂x

s(x, z1)

1
∂τ(x,z1)
∂x

−
∂2τ(x,z1)
∂x2[

∂τ(x,z1)
∂x

]2
 ∂Q(x, z1)

∂x
.

4When s(x, z1) is of this form Qj(x, z1) are polynomials. In general equation (3) may have solutions for
other s(x, z1) that are not necessarily polynomials.

5As before we mean this equality in the limit if ∂Ω(z) contains a point at infinity, and again, as will be
shown below, the eigenfunctions of the Stein operator will satisfy this condition.
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We would like to find functions Qj and numbers λj such that

AQj = λjQj. (4)

Defining ϕ(x, z1) := − 1
∂τ(x,z1)

∂x

and ψ(x, z1) := − 1
∂τ(x,z1)

∂x

[
∂s(x,z1)

∂x

s(x,z1)
−

∂2τ(x,z1)

∂x2

∂τ(x,z1)
∂x

]
, then each solution

of the eigenvalue problem (4) satisfies

ϕ(x, z1)
∂2Q(x, z1)

∂x2
+ ψ(x, z1)

∂Q(x, z1)

∂x
+ λQ(x, z1) = 0. (5)

with the following boundary conditions

c1Q(α1(z1), z1) + c2
∂Q(α1(z1), z1)

∂x
= 0 c21 + c22 > 0, (6)

d1Q(α2(z1), z1) + d2
∂Q(α2(z1), z1)

∂x
= 0 d21 + d22 > 0,

where [α1(z1), α2(z1)] denotes the support of X conditioned on Z1 = z1. The differential
equation (5) with the boundary conditions (6) is a Sturm-Liouville type problem. The
solution to this problem exists when one of the three sufficient conditions listed below is
satisfied. See [8] and [7].6 Moreover, in that case, the solutions are orthogonal polynomials
with respect to the weight function

W (x, z1) :=
R(x, z1)

ϕ(x, z1)
,

where R(x, z1) := exp
(∫ ψ(x,z1)

ϕ(x,z1)
dx
)
= exp

(∫ [ ∂s(x,z1)
∂x

s(x,z1)
−

∂2τ(x)

∂x2

∂τ(x,z1)
∂x

]
dx

)
= |s(x,z1)|

|∂τ(x,z1)/∂x| , and for

each j, Qj(x, z1) is proportional to

1

W (x, z1)

∂j

∂xj
(
W (x, z1)[ϕ(x, z1)]

j
)
.

Note that this formula works for any W that is a scalar multiple of the form above. Finally,
equation (2) implies that Pj(Z) = E[Qj(X,Z1)|Z] are polynomials of order j in µ(Z).

Here we list sufficient conditions for eigenfunctions {Qj(x, z1)}∞j=0 to be orthogonal poly-
nomials in x together with the corresponding examples of continuous conditional densities
fX|Z(x|z).

1. Hermite-like polynomials: ϕ is a non-zero constant, ψ is linear and the leading
term of ψ has the opposite sign of ϕ. In this case, let ϕ(x, z1) = c(z1) ̸= 0, then

6[7] and [8] give results for Hermite, Laguerre and Jacobi polynomials, the other cases are obtained by
defining x̃ = ax+ b and applying the results in [7] and [8]. Also note that these conditions are sufficient for
the solutions to be polynomials. Solutions that are not polynomials, but nevertheless form an orthogonal
basis might exist under less restrictive conditions.
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τ(x, z1) = − 1
c(z1)

x + d(z1). Then, ψ(x, z1) = c(z1)
∂s(x,z1)

∂x

s(x,z1)
= a(z1)x + b(z1). Thus, we

have
∂s(x,z1)

∂x

s(x,z1)
= a(z1)

c(z1
x + b(z1)

c(z1)
. Let α(z1) := a(z1)/c(z1) and β(z1) := b(z1)/c(z1), where

α(z1) < 0 ∀z1, since a(z1) and c(z1) always have opposite signs. Solving for s(x, z1) we
get s(x, z1) = γ(z1) exp (α(z1)x

2/2 + β(z1)x).

Example 1: Suppose there is no z1 so that z = z2, and d = 1. Consider

fX|Z(x|z) = 1

2
√
πσ2

exp
(
− (x−z)2

2σ2

)
. Then t(z) = 1

2
√
πσ2

exp (−z2/2), s(x) = exp [−x2/(2σ2)],

µ(z) = z, τ(x) = x/σ2, and W (x) = s(x). The orthogonal polynomials Qj are

Qj(x) = (−1)je
x2

(2σ2)
dj

dxj
e
− x2

(2σ2) ,

Pj(z) =
zj

σj and λj = −j for each j > 1.

Example 2: Suppose there is no z1 so that z = z2, and d > 1. For x = (x1, . . . , xd)
T

and z = (z1, . . . , zd)
T , let fX|Z(x|z) =

√
detM

(2π)
d
2
e−

(x−z)TM(x−z)
2 , where M is the inverse of

the variance-covariance matrix. Then t(z) =
√
detM

(2π)
d
2
e−

zTMz
2 , s(x) = e−

xTMx
2 , µ(z) = z,

τ(x) = Mx, and W (x) = s(x). For each nonnegative integer j = (j1, . . . , jd), the
polynomial Qj is given by

Qj(x) = (−1)j1+···+jde
xTMx

2
∂j1+···+jd

∂jxj11 . . . ∂x
jd
d

e−
xTMx

2 .

Then
Pj(Z) = E[Qj(X)|Z] = (m1Z)

j1 . . . (mdZ)
jd ,

where m1 = e1M, . . . ,md = edM are the row vectors of M .

2. Laguerre-like polynomials: ϕ and ψ are both linear, the roots of ϕ and ψ are
different, and the leading terms of ϕ and ψ have the same sign if the root of ψ is less
than the root of ϕ or vice versa.
Suppose ϕ(x, z1) = a(z1)x + b(z1) and ψ(x, z1) = c(z1)x + d(z1) with b(z1)/a(z1) ̸=
d(z1)/c(z1). Then

∂τ(x, z1)

∂x)
=

1

−a(z1)x− b(z1)
,

so

τ(x, z1) =
1

a(z1)
log[a(z1)x+ b(z1)|+ C(z1).

Moreover,

ψ(x, z1) = [a(z1)x+b(z1)]
∂s(x,z1)
∂x

s(x, z1)
+a(z1) = c(z1)x+d(z1) ⇔

∂s(x,z1)
∂x

s(x, z1)
=
c(z1)x+ d∗(z1)

a(z1)x+ b(z1)
,

8



where d∗(z1) = d(z1)− a(z1). This means that

s(x, z1) = ρ(z1) exp

{∫
c(z1)x+ d∗(z1)

a(z1)x+ b(z1)
dx

}
.

Example: Suppose there is no z1 so that z = z2, and d2 = 1. Let δ, r > 0. Consider

fX|Z(x, z) =
1

Γ(r + z)
δr+zxr+z−1e−δx (x > 0),

where Z > −r. Then t(z) = 1
Γ(r+z)

δr+z, s(x) = xr−1e−δx, µ(z) = z, and τ(x) = log x,

since xz = ez log x. In this case, ϕ(x) = −x, ψ(x) = δx − r, and W (x) = s(x). The
orthogonal polynomials Qj are

Qj(x) =
x−(r−1)eδx

j!

dj

dxj
(
xj+r−1e−δx

)
,

for j > 1, Pj(z) = z(z − 1) · · · (z − n+ 1), and λj = −δj.

3. Jacobi-like polynomials: ϕ is quadratic, ψ is linear, ϕ has two distinct real roots,
the root of ψ lies between the two roots of ϕ, and the leading terms of ϕ and ψ have
the same sign.

In this case,
∂τ(x, z1)

∂x
= − 1

(x− r1(z1))(x− r2(z1))
,

with r1 ̸= r2 and x not equal to either one of them. In this case, however, τ is not
one-to-one on x, and the condition given in Theorem 2.2 of Newey and Powell does
not hold unless specific support conditions are met.

Solving the last differential equation we get

τ(x, z1) =
1

r1(z1)− r2(z1)
[log |x− r2(z1)| − log |x− r1(z1)|] + c(z1).

Plugging this into the formula for ψ yields

ψ(x, z1) = (x−r1(z1))(x−r2(z1))

[
∂s(x,z1)
∂x

s(x, z1)
+

2x− r1(z1)− r2(z1)

(x− r1(z1))(x− r2(z1))

]
= a(z1)x+b(z1).

Rearranging terms gives us

∂s(x,z1)
∂x

s(x, z1)
= − 2x− r1(z1)− r2(z1)

(x− r1(z1))(x− r2(z1))

+
1

r1(z1)− r2(z1)

[
a(z1)r1(z1) + b(z1)

x− r1(z1)
− a(z1)r2(z1) + b(z1)

x− r2(z1)

]
=: κ(x, z1).
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Let α(x, z1) :=
∫
κ(x, z1)dx. Then

α(x, z1) = − log |(x− r1(z1))(x− r2(z2))|

+
a(z1)r1(z1) + b(z1)

r1(z1)− r2(z1)
log |x− r1(z1)|

− a(z1)r2(z1) + b(z1)

r1(z1)− r2(z1)
log |x− r2(z1)|,

and
s(x, z1) = ρ(z1) exp [α(x, z1)].

Example: Suppose there is no z1, and fX|Z(x, z) =
1

B(a+z,b−z)x
a+z−1(1− x)b−z−1 , for

x ∈ (0, 1), where B(·, ·) denotes the beta function. Suppose the following condition is
satisfied:

lim
x→0+

xa+ZQ(x) = lim
x→1−

(1− x)b−ZQ(x) = 0 Z − a.s. (7)

We also assume the support of Z is in (−a, b). Then t(z) = B(a,b)
B(a+z,b−z) ,

s(x) = 1
B(a,b)x

a−1(1−x)b−1, µ(z) = z and τ(x) = log
(

x
1−x

)
, since

(
x

1−x

)z
= exp

[
z log

(
x

1−x

)]
.

Then ϕ(x) = −x(1− x), ψ(x) = (a− b)x− a, and W (x) = s(x). The orthogonal poly-
nomial Qj are the scaled Jacobi polynomials and satisfy the following hypergeometric
differential equations of Gauss:

x(1− x)Q′′
j + (a− (a+ b)x)Q′

j + j(j + a+ b− 1)Qj = 0

for each degree j = 0, 1, . . . . See Section 4.21 of [8] and [9]. These scaled Jacobi
polynomials can be expressed with the hypergeometric functions

Qj(x) := P
(a−1,b−1)
j (1− 2x) =

(α)j
j!

· 2F1(−j, j + a+ b− 1; a; x) ,

where (α)j := α(α+ 1) · · · (α+ j − 1), and for c /∈ Z−, 2F1(a, b; c; x) :=
∑∞

j=0
(a)j(b)jx

j

(c)jj!
.

Note that these Qj’s satisfy equation (7). Moreover, the eigenvalues are λj = −j(j +
a+ b− 1) and for j > 1,

Pj(Z) = E[Qj(X)|Z] = −Z

λj
E[Q′

j(X)|Z].

3.2 The orthogonal polynomial basis results for discrete X

Here we show that the orthogonal polynomial basis results of the previous section go through
when X is discrete and satisfies the conditions in Theorem 1. Suppose for simlicity X is
one-dimensional with its conditional distribution given by

P (X = x|Z = z) := p(x|z) = t(z)s(x, z1)[µ(z)−m]x (8)

10



for
x ∈ a+ Z+ = {a, a+ 1, a+ 2, . . . },

where µ(Z) > m a.s., and a given −∞ ≤ a <∞.

For a function h, define respectively the backwards and forwards difference operators as

∇h(x) := h(x)− h(x− 1),

∆h(x) := h(x+ 1)− h(x).

Let Ah(x, z1) := s(x−1,z1)
s(x,z1)

∇h(x, z1) −
[
m+ s(x−1,z1)

s(x,z1)

]
h(x, z1), and let s(a − 1, z1) = 0 for

almost every Z = z.

Lemma 2. Suppose g is such that Eg(X,Z1) <∞. Then

E[Ag(X,Z1)|Z] = −µ(Z)E[g(X,Z1)|Z] (Z − a.s.)

Proof.

E[Ag(X,Z1)|Z] =
∑

x∈a+Z+

s(x− 1, Z1)

s(x, Z1)
[g(x, Z1)− g(x− 1, Z1)]t(z)s(x, Z1)[µ(Z)−m]x

−
∑

x∈a+Z+

[
m+

s(x− 1, Z1)

s(x, Z1)

]
g(x, Z1)t(z)s(x, Z1)[µ(Z)−m]x

= [m− µ(Z)]
∑

x∈a+Z+

g(x− 1, Z1)t(z)s(x− 1, Z1)[µ(Z)−m]x−1

− m
∑

x∈a+Z+

g(x, Z1)t(z)s(x, Z1)[µ(Z)−m]x = −µ(Z)E[g(X,Z1|Z].

Note that the result holds when the support of p(x|z) = P (x = x|Z = z) is

a− Z+ = {. . . , a− 2, a− 1, a}

with −∞ < a < ∞, Ah(x, z1) := s(x+1,z1)
s(x,z1)

∆h(x, z1) −
[
m+ s(x+1,z1)

s(x,z1)

]
h(x, z1), and

s(a+ 1, z1) = 0 for almost every Z = z.

From the above lemma we see that equation (2) holds, and iterating on that equation yields

E[Akg(X)|Z] = (−µ(Z))kE[g(X)|Z]. (9)

The corresponding Stein operator A is defined as Ah = A∆h. The eigenfunctions of A are
orthogonal polynomials Qj such that

AQj(x) = λjQj(x).

11



See [8], [7]. Then by (2) and (9) we have

λjE[Qj(X)|Z] = E[A∆Qj(X)|Z] = −µ(Z)E[∆Qj(X)|Z],

so that

E[Qj(X)|Z] = −µ(Z)
λj

E[∆Qj(X)|Z]

for j > 1. Thus, we know recursively that Pj(Z) := E[Qj(X)|Z] is an j-th degree polynomial
in µ(Z).

We now present the following specific examples.

1. Charlier polynomials: Suppose there is no Z1, and X|Z has a Poisson distribution

with density p(x|z) = e−(m̃0+z)[m̃0+z]x

x!
= e−z

e−m̃0m̃x
0

x!

[
1 + z

m̃0

]x
, for x ∈ N, so that t(z) =

e−z, s(x) =
e−m̃0m̃x

0

x!
, m0 = 1, and µ(z) = z

m̃o
. Then Ah(x) = h(x) − x

m̃0
h(x − 1) is

the Stein-Markov operator. The eigenfunctions of the Stein operator are the Charlier
polynomials Qj(x) = Cj(x; m̃0)(x) =

∑j
r=0

(
j
r

)
(−1)j−rm̃−r

0 x(x−1) . . . (x−r+1) which

are orthogonal w.r.t. Poisson-Charlier weight measure ρ(x) :=
e−m̃0m̃x

0

x!

∑∞
k=0 δk(x),

where δk(x) equals 1 if k = x, and 0 otherwise. See [7]. Finally,

Pj(Z) = E[Qj(X)|Z] =
∑j

r=0

∑∞
x=r e

−(m̃0+Z) (m̃0+Z)x

(x−r)!

(
j
r

)
(−1)j−rm̃−r

0 = Zj

m̃j
0

.

2. Meixner polynomials: Suppose there is no Z1, and for x ∈ N and α an inte-
ger greater than or equal to 1, p(x|z) =

(
x+α−1

x

)
pα[1 − p + µ(z)]xt(z), where t(z) =[∑∞

x=0
Γ(x+α)
x!Γ(α)

pα[1− p+ µ(z)]x
]−1

. The above lemma applies with s(x) =
(
x+α−1

x

)
pα,

m0 = 1 − p. Then Ah(x) = (1 − p)h(x) − x
x+α

h(x − 1) is the Stein-Markov opera-
tor. The eigenfunctions of the Stein operator are the Meixner polynomials Qj(x) =
Mj(x;α, p)(x) =

∑j
k=0(−1)k

(
j
k

)(
x
k

)
k!(x−α)j−kp−k, where (a)j := a(a+1) . . . (a+j−1).

which are orthogonal w.r.t. weight measure ρ(x) := s(x)
∑∞

k=0 δk(x).

3.3 Extension to Pearson-like and Ord-like Families:

Suppose X is a random variable with either Lebesgue density or density with respect to
counting measure, f , that satisfies

D[ϕ(x)f(x)] = ψ(x)f(x),

where D denotes derivative when X is continuous, and the forward difference operator ∆
when X is discrete, ϕ(x) is a polynomial of degree at most two and ψ(x) is a decreasing
linear function, ϕ(x) > 0, a < x < b, ϕ(a), ϕ(b) = 0 if a, b is finite. This relation describes the
Pearson family when X is continuous and Ord family, when X is discrete. Many continuous
distributions fall into the Pearson family, and many discrete ones fall into Ord’s family. See
[7] and the references therein.

Suppose X is a random variable in either Pearson or Ord family. Following [7], define
the Stein-Markov operator for FX as AQ(x) = ϕ(x)D∗Q(x) + ψ(x)Q(x), where D∗ denotes
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the derivative when X is continuous and the backwards difference operator, ∇, when X is
discrete, and for Q such that EQ(X), ED∗Q(X) < ∞. Then E[AQ(X)] = 0. Let the Stein
operator, A, be defined as AQ := ADQ. As before, let Qj denote the eigenfunctions of
A. Next, suppose that the conditional distribution of X given Z is such that the Stein-
Markov operator of FX|Z equals AµQ = ϕD∗Q+ (ψ+ cµ(Z))Q, where c is a constant. Then
E[AµQ(X)|Z] = 0. Since Qj are eigenfunctions of A

λjE[Qj(X)|Z] = E[AQj(X)|Z] = E[ADQj(X)|Z] = E[(A− Aµ)DQj(X)|Z]
= −cµ(Z)E[DQj(X)|Z].

Letting Pj(Z) := E[Qj(X)|Z] we see that Pj’s are jth-order polynomials in µ(Z). Thus,
our main theorem applies whenever the Stein-Markov operator of FX|Z equals AµQ =
ϕD∗Q + (ψ + cµ(Z))Q. The question then arises for which, if any, conditional distribu-
tions of X|Z the Stein-Markov operator is of this form. It should be pointed out that this
current approach extends to multidimensional discrete X|Z, and other types of distributions
with well defined Stein-Markov operators. We now give some examples for such discrete
distributions.

Examples:

1. Binomial distribution: Suppose X|Z ∼ Bin(N + µ(Z), p), with µ(Z) ∈ Z+. In this
case, ϕ(x) = (1− p)x, ψ(x) = pN − x, and

AµQ(x) = (1− p)x∇Q(x) + [pN + pµ(Z)− x]Q(x)

Let Q−1(x) := 0, Q1(x) = 0, and
Qj(x) = Kj(x,N, p) =

∑j
l=0(−1)j−l

(
N−x
j−l

)(
x
l

)
pj−l(1−p)l, the Krawtchouk polynomials,

are orthogonal with respect to the binomial Bin(N, p) distribution.

2. Pascal/Negative binomial distribution: Suppose

P (X = x|Z = z) = p(x|z) =
(
x+ α+ µ(z)− 1

x

)
pα+µ(z)(1− p)x,

for x ∈ N+. Then ϕ(x) = x, ψ(x) = (1− p)α− px, and

AµQ(x) = x∇Q(x) + [(1− p)α+ (1− p)µ(Z)− px]Q(x).

In this case, Qj = Mj(x;α, p), where Mj(x;α, p) denote Meixner polynomials which
were defined in the previous section and are orthogonal with respect to the Pascal
distribution with parameter vector (α, p).

4 Conclusion

In this paper we solve an identification problem for nonparametric and semiparametric mod-
els in the case when the conditional distribution of X given Z belongs to the generalized
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power series distributions family.7 Using an approach based on differential equations, Sturm-
Liouville theory specifically, we solved orthogonal polynomial basis problem for the condi-
tional expectation transformation , E[g(X)|Z]. Finally, we discussed how our polynomial
basis results can be extended to the case when the conditional distribution of X|Z belongs
to either the modified Pearson or modified Ord family.

In deriving our results we encountered a second order differential (or difference, in the case
of discrete X) equation with boundary values, which is a Sturm-Luiouville type equation. In
this paper we focused on cases in which the solutions to the Sturm-Liuouville problem, which
are the eigenfunctions of the operator A, are an orthogonal polynomial basis. Our approach
is more general than this. In particular, one might question for what conditional distributions
the eigenfunctions of the Stein operator A are orthogonal basis functions, but not necessarily
orthogonal polynomials. Our paper does not address this question. Addressing this question
is left for future research. Finally, the work of applying the orthogonal polynomial basis
approach for estimating structural functions is nearing completion.
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