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EFFICIENT DYNAMIC MATCHING WITH COSTLY SEARCH

ALP E. ATAKAN

Abstract. This paper considers a frictional market where buyers and sellers, with
unit demand and supply, search for trading opportunities. The analysis focuses on
explicit search frictions, allows for two-sided incomplete information, and puts no
restriction on agent heterogeneity. In this context, a non-trivial, full trade search
equilibrium is shown to exist, equilibria are characterized as the values that satisfy
the first order conditions for a non-linear planner’s (optimization) problem, and
necessary and sufficient conditions are provided for the existence of efficient search
equilibria under complete information. These results fully generalize to the two-
sided incomplete information setting, under an additive separability condition.

Keywords: Bargaining, Search, Matching, Two-sided Incomplete Information
JEL Classification Numbers: C73, C78, D83.

1. Introduction

On an online marketplace, such as Ebay (or maybe even Google), sellers endowed

with heterogeneous objects, search for potential buyers by running auctions or post-

ing prices, in turn, buyers look for objects by browsing through listings. In the labor

market individuals who differ in various dimensions try to locate jobs that comple-

ment their skills and suit their tastes. Families sort through housing options to locate

a match that fulfils their diverse needs. These markets share a common structure:

heterogeneous sellers try to find an appropriate trading partner from a diverse set

of potential buyers. The Assignment Problem (see Shapley and Shubik (1972), or

Roth and Sotomayor (1990) for a more recent treatment) is the canonical model for

analyzing such markets for indivisible objects, when trade occurs in a centralized,

frictionless competitive market. However, finding a partner is most commonly a de-

centralized process that is (almost) never frictionless. Participating and remaining
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active in a marketplace, and then locating and verifying the attributes of a poten-

tial match partner, involves monetary and non-monetary (hassle) costs; these are the

explicit costs of search. The possibly large amount of time spent finding a match

partner is also an implicit cost of search. Moreover, agent’s frequently have private

information about the traded goods as well as their preferences. Asymmetric infor-

mation further exacerbates both implicit and explicit search costs since even buyers

and seller pair, with large gains from trade, may fail to trade.

There is a large body of work that uses decentralized matching and bargaining

models to analyze frictional exchange. Much research has focused on characterizing

and outlining the efficiency properties of equilibria in decentralized matching and

bargaining models with search frictions. (For example, Mortensen (1982), and Hosios

(1990) explore efficiency properties of markets with homogeneous buyers and sellers;

Sattinger (1995) focuses on the multiplicity of equilibria in a model with discounting

and heterogeneous agents; Shimer and Smith (2000) establishes existence and charac-

terize matching patterns while Shimer and Smith (2001) explores efficiency properties

for models with discounting and heterogenous agents). Given that inefficiencies may

exits with frictions, researchers have also addressed whether these models converge

to an efficient, competitive market, as search frictions become small (For a homoge-

neous good Rubinstein and Wolinsky (1985), Gale (1987) and Mortensen and Wright

(2002) explore convergence to a competitive equilibrium under complete information

while Satterthwaite and Shneyerov (2007) extend the analysis to the two-sided in-

complete information case). However, the bulk of the previous literature focuses on

implicit time costs due to discounting rather than explicit costs of search and assumes

complete information (see Atakan (2006) and Chade (2001), for two exceptions, that

characterize matching patterns with explicit search frictions). Also, with a few excep-

tions, the models lack the full richness of the Assignment Problem in terms of buyer

and seller heterogeneity.

The analysis here focuses on explicit search frictions, allows for two-sided incom-

plete information, and puts no restriction on agent heterogeneity. Search frictions

are modeled as an additive per-period cost of search; locating a trading partner is

“fast,” but nevertheless costly. For example, in an online marketplace an agent may

locate a potential trade almost immediately, but must pay a listing/sampling fee, or
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alternatively, must maintain the required technology for participating in the market-

place. There are no restrictions on preferences or endowments, except transferable

utility and unit demand/supply. Consequently, there is heterogeneity in buyer tastes,

seller costs and the good each sellers owns - the model is the frictional analogue of

the Assignment Problem. In this context, a non-trivial, full trade search equilibrium

is shown to exist. Equilibria are characterized as the set of values that satisfy the

first order conditions for a non-linear planner’s (optimization) problem, and necessary

and sufficient conditions are provided for the existence of efficient search equilibria

under complete information. Under an additive separability assumption, these results

generalize to the two-sided incomplete information setting where incomplete informa-

tion is modeled as a case of independent private values. Also, search equilibria are

shown to converge to a competitive equilibria under both complete and incomplete

information. However, inefficiencies may remain at the limit even under complete

information: the limiting competitive equilibrium can be an equilibrium for only a

proper subset of the full economy under consideration.

A description of the model is as follows: In each period a unit measure of each

type (of buyers and sellers) from a finite set of types is available for entry and those

who expect a positive payoff voluntarily enter the market. The market is in steady-

state with the measure of agent types endogenously determined to balance the flow

of types through the economy. Once in the market, each agent pays a per period

cost, and receives a “draw” from the distribution of active players. The probability

that any buyer (or seller) is paired with a particular type is proportional to the

frequency of that type among all sellers (buyers) active in steady state. After two

agents are paired, nature designates a proposer, the proposer makes a price offer, and

the responder decides whether to trade at the offered price. If a meeting between

a pair results in a trade, then the two agents are removed from the population,

otherwise the agents return to the population of active players. Efficiency in this

context is defined by means of a planner’s problem. The planner also maintains a

steady state and is constrained by the decentralized search technology for creating

buyer-seller pairs. However, the planner can choose the measure of agents in the

market by controlling entry decisions and can choose which types consummate a

match if paired, i.e., match probabilities. Consequently, the planner maximizes per-

period production net of search costs by choosing the match probabilities and the
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steady state measure subject to the market remaining in steady state. If there are no

search costs, then the planner’s problem is equivalent to the Assignment Problem.

Search equilibria are characterized using a hypothetical planner’s problem which

may differ from the actual planner’s problem only in terms of distorted buyer and

seller search costs. The central result of the paper shows, under complete information

or two-sided incomplete information satisfying an additive separability condition, the

set of search equilibrium match probabilities and steady state measures coincides with

those that satisfy the first order conditions for the hypothetical planner’s problem.

In the model, search costs and the likelihood of proposing jointly determine the bar-

gaining strength of a buyer vis-à-vis a seller, or alternatively, agents’ perception of

their search costs are distorted by their relative bargaining strength. If buyers and

sellers are symmetric in their bargaining strength, then search costs are undistorted,

the hypothetical problem coincides with the actual planner’s problem and an efficient

search equilibrium exists.1 If buyers and sellers differ in their bargaining strengths

on the other hand, then the equilibrium is inefficient: there is excess entry by the

relatively strong side of the market and insufficient entry by the weak side in every

equilibrium with trade. Even when an efficient equilibrium exists, there are also inef-

ficient search equilibria. The planner’s problem is not convex and so search equilibria

that satisfy the first order conditions may nevertheless fail to be optimal. This kind

of inefficiency stems from a lack of coordination between buyers and sellers in their

entry decisions. A trivial equilibrium where nobody enters the market always exists

and provides a stark demonstration of a failure to coordinate entry. More generally,

if agents are symmetric in their bargaining strength, then any inefficiency that may

remain is shown to stem from coordination failures.

As search costs become small the welfare cost of inefficient entry and any inefficiency

due to asymmetric information disappears as the market converges to a competitive

equilibrium. Inefficiency due to coordination failures may remain, however, even at

the limit. Section 3.3 provides a “stable” example of a coordination failure that

results in a missing market for any level of search costs and consequently at the

limit.2 The limit in this example is a competitive equilibrium with trade for a proper

1In the model, equal bargaining power implies that the Hosios’ Condition (see Mortensen (1982) or
Hosios (1990)) is satisfied in equilibrium.
2Observe that the trivial no-trade equilibrium mention above also exists for any level of search costs
and the limit is a competitive equilibrium for the empty market. This example is, however, fragile,
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subset of the original economy. Nevertheless, the “best” search equilibrium of the

model, i.e., the equilibrium, free of coordination failures, that solves the hypothetical

planner’s problem, converges to the competitive equilibrium of the original economy

and is therefore asymptotically efficient. The competitive equilibrium benchmark

under consideration is a “flow” equilibrium as in Gale (1987) or Satterthwaite and

Shneyerov (2007), generalized to accommodate heterogenous goods. In each period,

flow supply is the measure of sellers of a particular good entering the market and flow

demand is the measure of agents willing to purchase a particular good entering the

market. In a flow equilibrium, the buyer and seller continuation values, which are

the implicit prices, equate flow supply to flow demand for each of the goods traded

in the market.

The paper proceeds as follows: Section 2 outlines the decentralized economy as

well as the planner’s problem, Section 3.1 presents the main results for the complete

information version of the model, Section 3.2 extends the result to the incomplete

information setting, Section 3.3 shows convergence to competitive equilibria, Section

3.4 discusses some extensions and Section 4 concludes. Proofs that are not included

in the main text are in the Appendix.

2. The Model

Buyers and sellers in the economy engage in search for possible trading partners.

Each seller owns one indivisible good for sale and each buyer wants to buy one good.

Time is taken as discrete. In each period, agents incur a positive, search cost cB ≥ 0

for a buyer and cS ≥ 0 for a seller and meet pairwise with potential partners. Either

the buyer or the seller is designated as the proposer. The probability that the buyer is

designated as the proposer is β ∈ (0, 1). The proposer offers a price. If the responder

accepts, then trade takes place and both agents leave the market. Agents who fail

to trade in a period return to the population and continue searching for potential

match partners. Utility is transferable. If a buyer of type b and a seller of type s

consummate their match, then they create total utility fbs which they split between

themselves.

i.e., not “stable,” since if some buyer accidently were to enter the market then some sellers would
follow and the trivial equilibrium would unravel.
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2.1. Population of Agents. B and S denote the finite sets of buyer and seller

types and I = B ∪ S the set of all types. In each period, a unit measure of each

type considers entering the market. Assume that the market is in steady state and

let l =
(
lb1 , ..., l|B|, ls1 , ..., l|S|

)
denote the steady state measure of buyers and sellers

in the market, i.e., l ∈ R|B|+|S|
+ . The probability for any seller of meeting buyer b

in a given period is pb = αlb/ max {LB, LS}, where LB =
∑

b∈B lb and α ∈ (0, 1],

for expositional simplicity only take α = 1.3 Likewise, the probability of meeting

seller s is ps = ls/ max {LB, LS}. In the case where li = 0 for all i ∈ I, the total

measure of pairs formed is equal to zero. These probabilities are commonly known by

all agents. In the incomplete information set-up of Section 3.2, further assume any

agent’s prior belief about his/her trading partner’s type coincides with the steady

state probabilities.

2.2. Agent Behavior and Strategies. Let σi denote a strategy for player i and

σ = (σi)i∈I a strategy profile. In the first period for agent b, the strategy determines a

probability of entering the market. Given that agent b is paired with s in the current

period, σb determines the price offer t, made to agent s, if agent b is designated as

the proposer and a probability of accepting price offer t, made by agent s, if b is

designated as the responder.4 The per-period reward function for a buyer b (seller s)

paired in the current period with seller s (buyer b) is:

πb (σ, s) (or πs (σ, b)) =


−cB + fbs − tbs (σ)

−cB + fbs − tsb (σ)

−cB

 or

−cS + tbs (σ)

−cS + tsb (σ)

−cS

 proposal of b accepted,

proposal of s accepted,

proposal rejected,

where tbs (σ) denotes the price offer made by buyer b to seller s given strategy σ. If

an agent does not enter the market or has accepted a match in a prior period, then

the agent is paired with 0, and πi (σ, 0) = 0. Also, if the agent does not get paired

in a period, then she/he is paired with herself and πi (σ, i) = −ci. Buyers and sellers

3This assumption is without loss of generality and it is easily verified that all results presented in
the paper go through for any choice of α.
4The initial probability of entry and the probability of accepting an offer for a certain type is
interpreted as the corresponding proportion of agents of that type playing a pure strategy.
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solve the following problem after any history of the game:

vi = max
σi

[
E

∞∑
t=0

πi (σi, σ, j (t))

]
,

where j (t) is drawn according to the steady state measure l, if there was a rejection

in period t−1. Since stationary sub-game perfect equilibria are considered, strategies

must maximize the infinite sum of payoffs after any possible path of play.

2.3. Steady State. Given a strategy profile σ, let mb ≤ 1 denote the number of buy-

ers of type b entering the market in each period. Also, let mbs denote the probability

that b and s match and leave the market, given that they are paired in a period and

b is the proposer. The market is assumed in steady state and so:

lbβ
∑

s
psmbs + lb(1− β)

∑
s
psmsb = mb ≤ 1 ∀b and,(SS for Buyers)

lsβ
∑

b
pbmbs + ls(1− β)

∑
b
pbmsb = ms ≤ 1 ∀s.(SS for Sellers)

These equations state that the number of type b buyers (or type s sellers) entering

the market in each period must equal the number of that type leaving the market.

Note that an agent will enter the market and search only if their value from par-

ticipating, i.e., vi, is non-negative. Also, if vi > 0, then all type i agents (equal to

measure one) will choose to participate each period.

2.4. Search Equilibrium. A search equilibrium is comprised of a mutually com-

patible strategy profile σ and steady state measure l, that is, the measure l satisfies

the steady state equations, given that agents use strategy profile σ and, each σi is

optimal after any sub-game given that agents use σ and the steady state measure is

l.

Given the stationary environment, values v = (vb, vs)b∈B,s∈S are also option values

of remaining unmatched in the economy. In any search equilibrium, a proposer will

offer no more than the continuation payoff to a responder. So, a buyer offers seller

s no more than vs and a seller offers buyer b no more than fbs − vb. Consequently,

values satisfy the recursive equations

vb = max{−cB +
∑

s
βpss

+
bs + vb, 0},

vs = max{−cS +
∑

b
(1− β) pbs

+
bs + vs, 0},
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where sbs = fbs − vb − vs denotes the surplus created in a match between b and s

and s+
bs = max {sbs, 0}. In subsequent analysis, it is more convenient to deal with

the values v, matching probabilities m and the steady state measure l instead of

detailing the equilibrium strategy profile σ. For notational convenience only, assume

that mbs = msb unless otherwise stated.5 The following four conditions are met by

any l, m, and v in a search equilibrium.

1. Individual Rationality. vi ≥ 0 for all i.

2. Efficient Bargaining. If sbs > 0, then mbs = msb = 1 and if sbs < 0, then

mbs = msb = 0.

3. Constant Surplus. The surplus function sbs satisfies

β
∑

s
psmbssbs = β

∑
s
pss

+
bs ≤ cB for all b

(1− β)
∑

b
pbmbssbs = (1− β)

∑
b
pbs

+
bs ≤ cS for all s

where the inequality holds with equality for i with pi > 0.

4. Steady State. li
∑

j mijpj ≤ 1 and if vi > 0, then the inequality for i holds with

equality.

The Individual Rationality Condition holds since entry to the market is voluntary.

The Efficient Bargaining Condition follows since in a random proposer game, any

meeting between b and s with positive surplus, results in a certain match. The

Constant Surplus Condition is a restatement of the recursive equations for buyer

and seller values. Finally, the Steady State Condition follows since if the value from

entering the economy for a certain type is strictly positive, then all potential entrants

of that type must enter the market.

As argued above if l and σ form a search equilibrium, then the implied v, l and

m satisfy Conditions 1 through 4. The following proposition gives the converse and

demonstrates that restricting attention to (v, l,m) triples is without loss of generality.

5This symmetry assumption only has bite if the agents are indifferent between accepting each other.
In this case, if mbs 6= msb, then define a symmetric equilibrium with m̂bs = m̂sb = βmbs+(1−β)msb.
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Proposition 1. If l, m and v satisfy Conditions 1 through 4, then there exists a

search equilibrium l and σ where m and v are the equilibrium match probabilities and

values.

2.5. The Planner’s Problem. As a benchmark for efficiency, a planner’s problem

is considered. The planner maximizes the per-period total production in the steady

state economy. However, the planner is constrained by the same technology as the

decentralized market in the formation of buyer seller pairs. The planner controls

agents’ entry, exit and matching decisions. Consequently, the planner chooses the

steady state measure and the match probabilities, subject to ensuring that the market

remains in steady state. The planner’s problem is

(1)

W (I, cB, cS) = max
l,m

W (I, cB, cS, lb, ls, m) = max
l,m

∑
b

∑
s lblsmbsfbs

max {LB, LS}
− cBLB − cSLS

subject to

lb
∑

s

ls
max {LB, LS}

mbs ≤ 1 for all b (vb)(2)

ls
∑

b

lb
max {LB, LS}

mbs ≤ 1 for all s (vs)(3)

0 ≤ mbs ≤ 1 for all b and s (χbs and ωbs)(4)

li ≥ 0 for all i ∈ I = B ∪ S, (µi)(5)

where the associated Kuhn-Tucker multiplier for each constraint is given in parenthe-

sis to the right. With a slight abuse of notation, I summarizes the whole economy,

i.e., denotes the set of agents as well as the joint production function f . Also, let

W (I, cB, cS, ls) = maxl̂b,m
W (I, cB, cS, lb, ls, m) denote the planner’s problem where

the measure of sellers ls is exogenously given. The objective function, given in equa-

tion (1), is the total production per period net of search costs. Total production in a

period equals the measure of b and s matches, lblsmbs/ max {LB, LS}, times produc-

tion in this match fbs, summed over all type pairs, while aggregate cost of search in

a period equals cBLB + cSLS. Constraints given by equation (2) and (3) ensure that

the number of agents of a certain type leaving the market as a result of a successful

match is less than one. The inequality need not hold with equality since the planner

can choose to have fewer than the maximum number of a particular type enter the
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market. The constraint given by equation (4) ensures that the match probabilities lie

between zero and one. Finally, equation (5) is the non-negativity constraint for the

steady state measure. If li = 0 for all i, then the above problem is not well defined.

In this case, the total number of matches formed is assumed to equal zero; thus all

constraints are satisfied and the objective function is equal to zero.

The measure of buyers and sellers in the market must be equal in any solution to

the planner’s problem (Lemma 1 below). Since if LB > LS, then LB can be scaled

down without affecting the distribution of types, and thus keeping the number of

pairs created constant while strictly decreasing the search costs. Also, using Lemma

1 to impose L = LB = LS when solving the planner’s problem ensures differentiability

and simplifies the analysis.

Lemma 1. If cB > 0 and cS > 0, then in any solution to the planner’s problem

LB = LS.

For cB > 0 or cS > 0, it is straight forward to show that a solution to the planner’s

problem exists. The following proposition further shows that when cB = 0 and cS =

0, the planner’s problem is equivalent to the Assignment Problem where fractional

assignments are permitted and consequently has a solution. The Assignment Problem

is the competitive benchmark for the economy under consideration and characterizes

all the “flow” competitive (and Pareto optimal) allocations for the economy.

Proposition 2. For all cB ≥ 0 and cS ≥ 0 a solution to the planner’s problem exists.

3. Main Results

3.1. Existence of Efficient Equilibria. The planner’s problem provides a conve-

nient tool for proving existence and characterizing all search equilibria. Assume that

cB > 0, cS > 0 and without loss of generality,

r =
cS/(1− β)

cB/β
≥ 1.

Consider a hypothetical planner’s problem W (I, cS/2(1 − β), cS/2(1 − β), l, m), i.e.,

a problem where the per period search cost for a buyer and a seller is cS/2(1 − β),

instead of cB and cS. Let F denote the set of match probabilities m, steady state

measures l and Kuhn-Tucker multipliers vb and vs, associated with equations (2) and

(3), that satisfy the first order conditions for W (I, cS/2(1 − β), cS/2(1 − β), l, m).
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Theorem 1 below shows that the set of search equilibria l, m and v, denoted E , are

just the elements of F , but with the measure of buyers lb multiplied by r. The

measure of buyers is increased by r since in a search equilibria the measure of sellers

and buyers in the market are not equal (Lemma 2 below), whereas in any solution to

the planner’s problem LB = LS (Lemma 1).

Lemma 2. If LS > 0, then LB/LS = r.

Proof. For lb > 0, multiplying both sides of the constant surplus condition by lb

implies that

(6) lbcB = β
∑

s
lbpsmbssbs.

Summing over all buyers shows that

(7) LBcB = β
∑

B×S
lbpsmbssbs.

Repeating the same steps for the sellers implies that

(8) LScS = (1− β)
∑

B×S
lspbmbssbs.

However, lspb = lbps for all b and s, so LBCB/β = LSCS/(1−β) and LB/LS = r. �

Theorem 1 characterizes all search equilibria as the set of (l,m, v) that satisfy first

order conditions for a non-linear program (the hypothetical planner’s problem). The

theorem also shows that a full-trade, non-trivial search equilibrium exists by proving

that the set F includes an optimizer of the planner’s problem. The planner’s problem

has an optimizer, by Proposition 2. Theorem 1 further shows the existence of Kuhn-

Tucker multipliers at any optimizer of the planner’s problem by proving that a certain

constraint qualification holds.6

Theorem 1. The set of search equilibria E = {(l,m, v) : (l,m, v) ∈ F} and E 6= ∅.

This theorem is stated under the assumption that cb > 0 and cS > 0. If cB = cS = 0,

then r is not defined and Lemma 1 is no longer valid, however Theorem 2 is still true.

In particular, if cB = cS = 0, then E = F , which follows immediately from the proof

provided for Theorem 1 in the appendix. This point is further elaborated in Section

3.3 where limiting equilibria and equilibria at the limit are discussed.

6Observe that the standard constraint qualifications do not work since the planner’s problem is not
a convex optimization problem
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In general, the problem set-up to characterize search equilibria and the actual

planner’s problem are not the same, thus search equilibria are not necessarily efficient.

However, if cB/β = cS/(1 − β), i.e., if cB + cS = cS/(1 − β), then the two problems

coincide and an efficient search equilibrium exists (Corollary 1 below). The bargaining

strength of an agent is jointly determined by the probability of proposing β, and search

cost c. Hence, efficiency requires that agents have equal bargaining power. Symmetry

in terms of bargaining power, i.e., cB/β = cS/(1−β), implies by the constant surplus

condition, that agents share equally the expected surplus from future matches. The

following corollary shows that equal bargaining power, or the symmetric division of

the surplus between buyers and sellers, is a sufficient condition for an efficient search

equilibrium. Also, if efficient matching involves trade, i.e., LS > 0 in the planner’s

problem, then cB/β = cS/(1 − β) is also a necessary condition for the existence of

an efficient search equilibrium. This is because if cB/β < cS/(1 − β), in any search

equilibrium with trade, LB > LS > 0, by Lemma 2, i.e., there is excess entry by

buyers.

Corollary 1. If cB/β = cS/(1− β), then there exists an efficient search equilibrium

(l,m, v), and W (cB, cS) =
∑

b vb +
∑

s vs = max(l̂,m̂,v̂)∈E
∑

b v̂b +
∑

s v̂s.

Proof. If (l,m) ∈ arg max W (cB, cS, l, m), then (l,m, v) ∈ E by Theorem 1 and since

cS/(1−β) = cB+cS. Also, rearranging equation (8), by recalling that sbs = fbs−vs−vb

and that for vi > 0,
∑

j lipjmij = 1, shows

(9)
∑

s
vs +

∑
b
vb = −cBLB − cSLS +

∑
B×S

lbpsmbsfbs

for all (l,m, v) ∈ E . Consequently,

(10) max
(l̂,m̂,v̂)∈E

∑
b
v̂b +

∑
s
v̂s = max

l,m
W (cB, cS, l, m).

�

Even if the sufficient condition given in Corollary 1 is satisfied, there are inefficient

search equilibria in addition to the efficient equilibria identified above. The planner’s

problem is not a convex optimization, so a search equilibria that, by Theorem 1,

satisfies the first order conditions may not be an optimizer of the planner’s problem.

This kind of inefficiency can be related to coordination problems. A trivial equilibrium

where nobody enters the market always exists and provides a stark demonstration
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of a failure between buyers and sellers to coordinate. A two buyer, two seller search

market provides a more robust failure of coordination. Let f12 = f21 = 1/5 and

f11 = f22 = 1, that is buyer 1 likes seller 1’s good and buyer 2 likes seller 2’s good.

Assume that cB = cS = c and β = 1/2. The efficient equilibrium involves type 1

buyers trading only with type 1 sellers, and type 2’s trading only with other type 2’s

for small c, and for 3/10 ≥ c ≥ 2/10 requires all buyers trading with all sellers. It is

straight forward to show that there are stable inefficient equilibria for all c ≤ 3/10,

where only type 1 (or only type 2) agents enter, i.e., there is a coordination failure

between sellers and buyers of type 2. These inefficient equilibria remain, and remain

stable, even as search costs disappear. This point is further developed in section 3.3.

The following corollary proves that if cB/β = cS/(1 − β), then any inefficiency in

a search equilibrium is caused by coordination failures. More precisely, if the mea-

sure of sellers ls (or buyers lb) is taken to equal it’s search equilibrium value, then

the equilibrium measure of buyers and the equilibrium match probability is efficient.

That is, the equilibrium measure of buyers, as well as the matching is efficient, when

the measure of sellers is taken as exogenous. Consequently, if sellers and buyers are

symmetric in their bargaining strength, then the only source of inefficiency is agents

not coordinating with the opposite side of the market in their market entry decisions.

In other words, equilibrium option values are sufficient to coordinate matching deci-

sions for all agents and entry/exit decisions for all buyers (or for all sellers), but not

sufficient to jointly coordinate entry decisions for both sides of the market.

Corollary 2. Assume cB/β = cS/(1−β). If l, m and v comprise a search equilibrium,

then

(i) The steady state measure of buyers lb and the matching m is optimal given the

measure of seller ls in the market, i.e., (lb, m) ∈ arg maxlb,m W (cB, cS, lb, ls, m),

(ii) The steady state measure of sellers ls and the matching m is optimal given the

measure of buyers lb in the market, i.e., (ls, m) ∈ arg maxls,m W (cB, cS, lb, ls, m).

Lemma 2 shows that whenever the surplus is shared unevenly between buyers

and seller, that is whenever cB/β 6= cS/(1 − β), there is inefficient entry into the

market, even if the search equilibrium is an optimizer to the hypothetical planner’s

problem. A two type example of a market for a homogeneous good is sufficient

to further demonstrate inefficiency due to excess or insufficient entry. Consider an
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economy where high (bh) and low (bl) valuation buyers are willing to pay 1 and 1/2−ε

respectively for a good, while high (sh) and low (sl) cost sellers can produce the good

for 1/2+ε and 0, respectively. Assume cB +cS ≤ 1/2 and β = 1/2. Efficiency requires

that only types bh and sl enter in each period, an equal number of buyers and sellers

are present in the market (Lemma 1), and each meeting ends in a trade. Under these

parameter values, there are two search equilibria: a trivial equilibria without trade,

and an equilibrium where only bh and sl enter and all meetings end in a trade. By

Lemma 2, lbh
/lsl

= cS/cB and so the equilibrium is efficient only if the surplus is

shared equally between buyers and sellers, i.e., if cB = cS. Since otherwise, e.g., if

cS > cB, then lsl
< lbh

and there is excess entry by types bh. Instead if we assume,

cB < 1/2 < cS, then no trade is the only search equilibrium, but for cB + cS ≤ 1 the

efficient configuration is as before. In this search equilibrium, sellers do not receive

enough surplus with β = 1/2 and do not enter the market; thus there is insufficient

entry by types sl.

The intuition of the two type example is extended to the general model in the

following corollary. Suppose that cS/1 − β > cB/β, i.e., buyers are in a stronger

bargaining position and receive more of the surplus. The corollary shows the existence

of a “best” search equilibrium that optimizes a hypothetical planner’s problem with

search costs equal to cS/(1 − β), if the measure of buyers LB is scaled down by r.

This implies that there are “too few” sellers in the market when compared to actual

planner’s problem since cS/(1−β) > cB + cS and there are “too many” buyers in the

market given the measure of sellers is LS, since LB > LS. Also, the matching and

distribution of types solve the hypothetical planner’s problem, consequently, excess

entry by buyers and insufficient entry by sellers are the only sources of inefficiency in

the best search equilibrium.

Corollary 3. There exists (l,m, v) ∈ E such that

(lb/r, ls, m) ∈ arg max W (cS/2 (1− β) , cS/2 (1− β) , l, m) ,

and (l,m, v) is the best search equilibrium, i.e.,
∑

b vb+
∑

s vs = maxv̂∈E
∑

b v̂b+
∑

s v̂s.

Also, LS ≤ L′
S for any (l′, m′) ∈ arg max W (cB, cS, l, m).

Proof. If (lb/r, ls, m) ∈ arg max W (cS/2 (1− β) , cS/2 (1− β) , l, m), then (lb/r, ls, m, v) ∈
F for some v and (lb, ls, m, v) ∈ E , by Theorem 1. Also, by the argument given in

Corollary 1,
∑

v̂b +
∑

v̂s = −LScS/(1 − β) +
∑

B×S l̂sp̂bm̂bsfbs, for all (l̂, m̂, v̂) ∈ E .
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Consequently,
∑

b vb +
∑

s vs = maxv̂∈E
∑

b v̂b +
∑

s v̂s. To show LS ≤ L′
S assume to

the contrary that LS > L′
S for some (l′, m′) ∈ arg max W (cB, cS, l, m). Optimality of

(lb/r, ls, m) for cost cS/2 (1− β) implies that

−LS
cS

1− β
+
∑

B×S
lspbmbsfbs ≥ −L′

S

cS

1− β
+
∑

B×S
l′sp

′
bm

′
bsfbs(11) ∑

B×S
lspbmbsfbs −

∑
B×S

l′sp
′
bm

′
bsfbs ≥ (LS − L′

S)
cS

1− β
(12)

However,

(13) (LS − L′
S)

cS

1− β
> (LS − L′

S)(cS + cB)

and so∑
B×S

lspbmbsfbs −
∑

B×S
l′sp

′
bm

′
bsfbs > (LS − L′

S)(cS + cB)(14)

−LS(cS + cB) +
∑

B×S
lspbmbsfbs > −L′

S(cS + cB) +
∑

B×S
l′sp

′
bm

′
bsfbs(15)

contradicting that (l′, m′) ∈ arg max W (cB, cS, l, m). �

3.2. Efficiency under Incomplete Information. Here, the results presented in

the previous subsection are extended to the case where buyers and sellers in the market

have private information under certain conditions. In the incomplete information

game, the proposer offers a price and the responder chooses whether to trade. As

before, agents who trade permanently leave the market, agents who fail to trade

return to the searching population and the economy remains in steady state.

Under the assumption of the game under question, even if the proposer were al-

lowed to choose any mechanism, she would choose the same take-it-or-leave-it offer

as in the case where her type is publicly known (For a detailed argument see Atakan

(2007) which adopts the development in Yilankaya (1999) to this framework). Conse-

quently, the analysis is focused, without loss of generality, on a game-form where the

proposer makes a take-it-or-leave-it offer and truthfully announces his/her type and

the responder accepts or rejects the offer. A strategy σi for agent i specifies a transfer

offer t and the truthful announcement of her type, if i is designated as the proposer,

and a probability of accepting the price offer, if designated as the responder. The

proposer can condition her offer on the measure of agents in the economy l and the

observable characteristics of her partner for the period. As before, the match prob-

ability mbs denotes the probability that b and s consummate their match and leave
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the market, given that they are paired in a period and b is chosen as the proposer.

Also, as before, a search equilibrium is comprised of a mutually compatible steady

state measure l and a strategy profile σ.

Private Information. A seller’s type s specifies two variables: the good that

the seller has for sale, denoted xs, and the reservation value (or cost) for the seller,

denoted rs. For example, if the seller is an individual looking for a job, then xs denotes

the worker’s specialization (e.g. engineer or manager) and rs his or her disutility from

labor. A buyer’s type b also specifies two variables, the buyer’s segment, denoted xb,

and the buyers reservation value, denoted rb. For example, if the buyer is a firm

attempting to hire a worker, then xb denotes the type of vacancy that the firm is

trying to fill, and rb denotes the cost of making this job available or the production

the firm can achieve if it were to staff the vacancy internally without hiring a new

employee. If a buyer and seller match, then they create value fbs = h (xs, xb)−rb−rs.

Continuing with the example, when worker b is hired by firm s the total value created

is given by the production achieved by hiring a worker with skill set xs for job xb,

h (xs, xb), net of the disutility from labor rs and the cost for the firm rb. In what

follows, I write hbs instead of h(xs, xb) with the understanding that hbs′ = hbs for two

sellers s and s′ who own the same good, and likewise for buyers that belong to the

same segment.

The analysis here assumes independent private values. That is, when a buyer and

seller meet the buyer observes the good that a seller has for sale, i.e., xs, while xb, rb

and rs may remain as private information. Also, assume that agents know the steady

state distribution and that any agent’s prior belief about his/her trading partner’s type

coincides with the steady state distribution of types in the economy.

The vector of values in a search equilibrium under private information satisfy the

recursive equations

vs =

{
β
∑

b

pbmbs(tb,xs − rs − vs) + (1− β)
∑

b

pbmsb(ts − rs − vs) + vs − cS

}+

(16)

vb =

{
β
∑

s

psmbs(hbs − tb,xs − rb − vb) + (1− β)
∑

s

psmsb(hbs − ts − rb − vb) + vb − cB

}+

,

(17)
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where tb,xs represents the transfer offer made by buyer b to a seller endowed with good

xs and ts the transfer offer made by a seller.

Before proceeding further, Theorem 2 is stated. This result shows that if search

is costless, then the set of search equilibria under complete information and the set

of equilibria under incomplete information coincide. That is, incomplete information

of the independent private values variety is costly only in the presence of search

frictions. In this model, with positive search costs, asymmetric information can cause

inefficiencies because agents with strictly positive surplus may fail to consummate

a match, that is, bargaining between buyers and sellers may be ex-post inefficient.

However, when search frictions are absent, an agent has an incentive to wait for her

favorite counterpart. This implies that the agent’s option value adjusts and leaves

no room for agreement with anybody but her favorite trading partner. Thus each

agents ends up with his/her favorite match and the bargaining in the market is ex-

post efficient, given the distribution of agents and the endogenously generated outside

options.

Theorem 2. Assume that cS = cB = 0. Also assume if seller s and buyer b meet, then

xs is observed by the buyer, however xb, rb and rs are private information. The set of

search equilibrium values and measures (v and l) under complete information and the

set of search equilibria values and measures (v and l) under incomplete information

are the same.

Although the previous theorem focused on frictionless search, the main result of

this section (Theorem 3) considers general search costs cB > 0 and cS > 0. In

particular, Theorem 3 demonstrates, for any positive search cost, that the set of

search equilibrium under complete information and the set of search equilibrium under

complete information coincide, under the following assumption on the information

structure.

Assumption 1 (Additively Separable Private Information (ASP)). If seller s and

buyer b meet, then xs is observed by the buyer and xb is observed by the seller however

rb and rs are private information.

In the case of additively separable private information, a buyer knows which good

he/she is purchasing, but not the seller’s cost rs, while a seller observes the segment

of the buyer, but not his/her reservation values rb. In terms of the labor market
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example, the firm observes the skill set of the worker, but not his/her disutility from

labor, and the worker observes the type of vacancy, but not the firm’s cost. Under

ASP, the seller can also condition the transfer offer ts on the segment xb of the buyer,

i.e., ts,xb
.

Before stating and proving Theorem 3, two preliminary results (Lemma 3 and 4)

are needed. Lemma 3 shows that the difference between the option values of two

buyers (or sellers), who belong to the same segment (who own the same good), is

equal to the difference between their private reservation utility rb (their private costs

rs). Lemma 4 employs the finding of Lemma 3 to prove a version of Proposition 1

under ASP, i.e., that the vector (l,m, v) comprises a search equilibrium under ASP

if and only if it satisfies Conditions 1 through 4. Finally, Theorem 3 uses Lemma 4

and Proposition 1 to establish the equivalence between search equilibria under ASP

and search equilibria under complete information.

Lemma 3. Suppose that l, m and v satisfy Conditions 1 through 4, or alternatively

that l is the steady state measure, m and v are the match probabilities and values

associated with a search equilibrium under private information. If sellers s and s′ own

the same good (xs = xs′), then vs−vs′ = rs′−rs and thus fbs−vb−vs = fbs′−vb−vs′.

Likewise, if buyers b and b′ belong to the same segment(xb = xb′), then vb−vb′ = rb′−rb

and thus fbs − vb − vs = fb′s − vs − vb′.

Proof. Assume l, m and v satisfy Conditions 1 through 4. The Efficient Bargaining

and Constant Surplus Conditions imply that the value to seller s′ under the match

probabilities mbs′ must be at least as large under mbs. This is because the match

probability mbs′ = 1, if the surplus with buyer b is strictly positive and mbs′ = 0, if

the surplus is strictly negative. Consequently,

cS ≥ (1− β)
∑

b
pbmbs(fbs′ − vb − vs′)(18)

vs′ ≥ −cS + (1− β)
∑

b pbmbs(fbs′ − vb)

(1− β)
∑

b pbmbs

(19)

Also,

(20) vs =
−cS + (1− β)

∑
b pbmbs(fbs − vb)

(1− β)
∑

b pbmbs

.
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Thus for sellers s′ and s who own the same good

(21) vs − vs′ ≤
∑

b pbmbs(fbs − fbs′)∑
b pbmbs

= rs′ − rs.

Reversing the role played by s and s′ gives

(22) vs − vs′ ≥
∑

b pbmbs′(fbs − fbs′)∑
b pbmbs′

= rs′ − rs,

and consequently vs − vs′ = rs′ − rs. Also, if b and b′ belong to the same segment,

then a similar argument as above shows that vb − vb′ = rb′ − rb.

Suppose that v and m represent values and match probabilities in a search equilib-

rium under private information. Rearranging the recursive equation for seller values,

i.e., equation (16), gives

(23) vs =
cS + β

∑
b pbmbs(tb,xs − rs) + (1− β)

∑
b pbmsb(ts,xb

− rs)

β
∑

b pbmbs + (1− β)
∑

b pbmsb

The value of seller s′ must be at least as large as the value that this seller would get if

she was to adopt strategy σs optimal for seller s who is endowed with the same good.

Consequently,

(24) vs′ ≥ cS + β
∑

b pbmbs(tb,xs − rs′) + (1− β)
∑

b pbmsb(ts,xb
− rs′)

β
∑

b pbmbs + (1− β)
∑

b pbmsb

.

Thus, vs−vs′ ≤ rs′−rs. Exchanging the roles of seller s and s′ implies that vs−vs′ ≥
rs′ − rs and consequently vs − vs′ = rs′ − rs. A symmetric argument establishes that

vb − vb′ = rb′ − rb for any two buyers who belong to the same segment. �

Lemma 3 implies that if a buyer b accepts an offer t from seller s, that is, if

vb ≤ h (xb, xs) − rb − t, then all buyers b′ from that segment should also be willing

to accept the price offer, since vb′ + rb′ − rb = vb ≤ h (xb, xs) − rb − t. Likewise, if a

seller accepts an offer t from buyer b, then all sellers who own the same good should

also be willing to accept this price offer. Consequently, not knowing rs or rb does

not constrain a proposer when making an offer. The proposer can extract all the

surplus by simply conditioning the price offer on the good xs or the segment xb of

the responder. The lemma below makes this line of reasoning exact and outlines its

implications.
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Lemma 4. Assume ASP. If σ and l comprise a search equilibrium, then the equilib-

rium l, m and v satisfy Conditions 1 through 4. Conversely, if l, m and v satisfy

Conditions 1 through 4, then there exists σ such that l and σ comprise a search equi-

librium and equilibrium values are given by v.

The following theorem shows that the set of search equilibria under ASP and

search equilibria under perfect information are the same. Consequently, all results

presented for perfect information apply, without alteration, to ASP.

Theorem 3. The set of search equilibrium values and measures (v and l) under

complete information and the set of search equilibria values and measures (v and l)

under ASP are the same.

Proof. If l and σ is a search equilibrium under complete information, then by Proposi-

tion 1 the equilibrium l, m and v satisfy Conditions 1 through 4. Thus, by Lemma 4,

there exists σ̂ such that l and σ̂ are a search equilibrium under ASP and equilibrium

values are given by v. Conversely, if l and σ comprise a search equilibrium under

ASP, then by Lemma 4 the equilibrium l, m and v satisfy Conditions 1 - 4. Thus, by

Proposition 1, there exists σ̂ such that l and σ̂ comprise a search equilibrium under

complete information and equilibrium values are given by v. �

The equivalence established in Theorem 3 between search equilibria with perfect

information and search equilibria under ASP is not true in the more general inde-

pendent private values setting. Nevertheless, Theorem 2, stated and discussed at

the beginning of this section, establishes the equivalence between search equilibria

under complete and private information when there are no search friction, i.e., when

cB = cS = 0. The following proof of Theorem 2 hinges on Proposition 1 and Lemma

5 (see the appendix). Lemma 5 is an exact analog of Lemma 4 that holds under the

hypothesis of Theorem 2.

Proof of Theorem 2. If l and σ is a search equilibrium under complete information,

then by Proposition 1 the equilibrium l, m and v satisfy Conditions 1 through 4. Thus,

by Lemma 5, there exists σ̂ such that l and σ̂ are a search equilibrium under private

information and equilibrium values are given by v. Conversely, if l and σ comprise a

search equilibrium under private information, then by Lemma 5 the equilibrium l, m

and v satisfy Conditions 1 through 4. Thus, by Proposition 1, there exists σ̂ such that
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l and σ̂ comprise a search equilibrium under complete information and equilibrium

values are given by v. �

3.3. Convergence to a Competitive Equilibrium. This subsection argues that

search equilibria converge to competitive equilibria as search frictions disappear, that

is, any limiting equilibrium is competitive (Theorem 4 and Corollary 4). Moreover,

any search equilibria is also a competitive equilibria if there are no search frictions

(cB = cS = 0), that is, equilibria at the limit are competitive (Corollary 5).

The competitive equilibrium benchmark considered here is a “flow” equilibrium as

in Gale (1987) or Satterthwaite and Shneyerov (2007), generalized to accommodate

heterogenous goods. In each period, flow supply is the measure of sellers of a partic-

ular good entering the market and flow demand is the measure of agents willing to

purchase a particular good entering the market. In a flow equilibrium, the buyer and

seller continuation values, which are the implicit prices, equate flow supply to flow

demand for each good traded in the market. The competitive equilibrium allocations

for economy I = B∪S is described by the following linear program which is the clas-

sical Assignment Problem where fractional assignments are permitted. As was shown

in Proposition 2, the Assignment Problem and the planner’s problem for cS = 0 and

cB = 0, i.e., maxl,m W (I, 0, 0, l, m), are equivalent.

The Assignment Problem involves maxq≥0

∑
B×S qbsfbs subject to

∑
b qbs ≤ 1 for all s

and
∑

s qbs ≤ 1 for all b; while the dual of the Assignment problem involves minv≥0

∑
B vb+∑

S vs subject to vs + vb ≥ fbs for all b and s. The vector qbs that solves the program

is a competitive allocation and denotes the measure of matches between b and s that

are created in each period of time. Any vector v that solves the dual program is a

competitive equilibrium utility vector and the competitive price of a traded good is

pxs = vs + rs. The first constraint of the Assignment Problem states that the flow

demand for seller of type s, i.e.,
∑

b qbs, must be less than the flow supply of that

type, which is at most one. This constraint will bind, if the good’s price is positive,

or more precisely, if vs > 0 and thus pxs = vs + rs > rs. The second constraint states

that the flow supply to buyers of type b, must be less than the flow demand by type

b, which is at most one. Again, this constraint will bind if vb > 0. Together the

constraints ensure market clearing.
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Theorem 4 and Corollary 4, presented below, consider sequences of search equilibria

(l(cn), m(cn), v(cn)) as search costs disappear (as (cn
B, cn

S) → 0). Assume,

1 ≤ cn
S/1− β

cn
B/β

≤ r̂

for all n, or in words, that the bargaining power of a buyer vis-à-vis a seller does not

become arbitrarily large as search frictions disappear. This assumption ensures that

any sequence (l(cn), m(cn), v(cn)) is contained in a compact set and has a convergent

subsequence. This is verified in the proof of Theorem 4. So in the statements of the

results, attention is restricted, without loss of generality, to convergent subsequences.

Theorem 4 states that any sequence of search equilibria converge to a solution to

the planner’s problem with no search frictions for the economy H. Consequently,

the limiting measure of matches is a competitive allocation and the limiting vector

of values is a competitive utility vector for H. The set H is defined as the set of

agents that are active in the market at the limit, i.e., the support of the limiting

measure ln → l. In general H could be a proper subset of the actual economy I. For

instance, since nobody entering the market is always a trivial equilibrium, the limit is

a trivial competitive equilibrium for H = ∅ ⊂ I and consequently the limiting search

equilibrium is inefficient. The two buyer, two seller example outlined in subsection

3.1 provides a more robust demonstration of a asymptotically inefficient sequence

of search equilibria. Let f12 = f21 = 1/5 and f11 = f22 = 1, that is f is super-

modular; buyer 1 likes seller 1’s good and buyer 2 likes seller 2’s good. For small

c, and at the limit, efficiency requires that type 1 buyers trade only with type 1

sellers, and type 2’s trade only with other type 2’s. However, there is a sequence of

stable search equilibria where only type 1 buyers and type 1 sellers enter the market.

Consequently the limit of this sequence is inefficient with only the market for type

1 agents operating. Observe that for each c, the equilibrium is stable since forcing

a small measure of type 2 buyers into the market would not entice type 2 sellers to

flow suit and enter.

Nevertheless, Corollary 4, shows that there always exists a sequence of search equi-

libria, in particular a sequence of the “best” search equilibria as identified by Corollary

3, that converge to the competitive equilibrium of the full economy I and are con-

sequently asymptotically efficient. Therefore, Theorem 4 (and Corollary 4) shows

that inefficiencies caused by excess/insufficient entry or by incomplete information
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disappear along with search friction. However, inefficiencies caused by coordination

failures may remain even at the frictionless limit.

Theorem 4. If (l(cn), m(cn), v(cn)) → (l̂, m̂, v̂), then (l̂, m̂) ∈ arg maxl,mW (H, 0, 0, l, m)

where H = supp(l̂); and vs + rs is a competitive equilibrium price vector for economy

H.

Proof. The sequence (l(cn), m(cn), v(cn)) is contained in a compact set since 0 ≤ Ln
B ≤

Ln
s ≤ r̂|B||S|, 0 ≤ mbs ≤ 1 and 0 ≤ v(cn) ≤ f̄ . Thus a convergent subsequence exists.

For a proof of Ln
S ≤ r̂|B||S| see the appendix.

It is straight forward to show that the vector (l̂, m̂, v̂) satisfies Conditions 1 through

4 and consequently comprises a search equilibrium for I when cB = cS = 0. The fol-

lowing proves that any vector (l̂, m̂, v̂) satisfying Conditions 1 through 4 solves the As-

signment Problem for H and consequently is an element of arg maxl,mW (H, 0, 0, l, m).

I show that the measure of per-period matches q̂bs = m̂bsl̂bp̂s solves the Assignment

Problem and v̂ solves the dual of the Assignment Problem, consequently, that q̂ is a

competitive allocation and v̂s − rs is a competitive price vector for the economy H.

Note that q̂ is feasible for the Assignment Problem by Condition 4. Also, v̂ is feasible

for the dual of the Assignment Problem since, ŝ+
bs ≤ 0 and so v̂b + v̂s ≥ fbs for all b

and s. Consequently,

(25) W ≥
∑

BH×SH

q̂bsfbs =
∑
BH

v̂b +
∑
SH

v̂s ≥ W

proving that W =
∑

BH×SH
q̂bsfbs. �

Corollary 4. There exists a sequence of search equilibria (ln, mn, vn) → (l,m, v) such

that

(l,m) ∈ arg max W (I, 0, 0, l, m),

and consequently vs + rs is a competitive equilibrium price vector for the economy I.

Proof. By Corollary 3 there exists (ln, mn, vn) such that

(26) (lnb /rn, lns , mn) ∈ arg max W (cn
S/2 (1− β) , cn

S/2 (1− β) , l, m) .

for all n. Let (l,m, v) denote the (possibly subsequential) limit. By Berge’s Maximum

Theorem arg max W (I, cn
S/2 (1− β) , cn

S/2 (1− β) , l, m) is a compact valued, upper-

semi-continuous correspondence. Consequently, the limit (lb/r, ls, m) ∈ arg max W (I, 0, 0, l, m).
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However, since there are no search costs also (lb, ls, m) ∈ arg max W (I, 0, 0, l, m). By

Proposition 2, maxl,m W (I, 0, 0, l, m) is equivalent to the Assignment Problem and

so the per-period measure of matches qbs = pslbmbs is a competitive allocation and

vs + rs is competitive price vector for the economy I. �

Theorem 4 (and Corollary 4) showed that search equilibria are asymptotically com-

petitive. The following corollary shows that the equilibria at the limit, i.e., when

cB = cS = 0 are also competitive. Since by Theorem 2, if cB = cS = 0, the set of

search equilibria under complete and incomplete information coincide, Corollary 5

covers both information structures.

Corollary 5. Assume cB = cS = 0. If (l̂, m̂, v̂) is a search equilibrium, then (l̂, m̂)

is an element of arg maxl,mW (H, 0, 0, l, m) where H = supp(l̂); and vs + rs is a com-

petitive equilibrium price vector for economy H. Conversely, if (l̂, m̂) is an element

of arg maxl,mW (I, 0, 0, l, m), then (l̂, m̂, v̂) is a search equilibrium.

Proof. Theorem 4 implies that any (l̂, m̂, v̂) that satisfies Condition 1 through 4 is an

element of arg maxl,mW (H, 0, 0, l, m). By Proposition 1 any search equilibrium satis-

fies Condition 1 through 4 and consequently is an element of arg maxl,mW (H, 0, 0, l, m).

Conversely, if (l̂, m̂) is and element of arg maxl,mW (I, 0, 0, l, m), then (l̂, m̂, v̂) is a

search equilibrium by Theorem 1. �

3.4. General Matching Functions. This paper so far focused on a particular spec-

ification of the random matching process. The number of matches formed in each

period is assumed to equal min {LB, LS}. Previous literature, however, has consid-

ered a variety of matching structures. This subsection shows that the results, that

depend on the particular specification of the random matching process (Theorem 1),

are robust to different specifications of a matching function. Let N (LB, LS) denote

the number of matches between buyers and sellers formed in a period. The probability

that a buyer meets seller s is
N (LB, LS)

LB

ls
LS

,

i.e., the probability that the buyer finds a partner N (LB, LS) /LB, times the proba-

bility that this partner is actually seller s, ls/LS. Consequently, there are

N (LB, LS) lslb
LBLS
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matches formed between buyer b and seller s in a period.

Assumption 2 (MF). The match function N : R2
+ → R+ is continuously differ-

entiable, strictly concave, homogeneous of degree 1, and symmetric, i.e, N (X, Y ) =

N (Y,X).

The following theorem shows that if the buyers and sellers are symmetric in terms

of both search costs and bargaining power, then an efficient equilibrium exists.

Proposition 3. Suppose that the matching function satisfies Assumption (MF), cB =

cS and β = 1/2. A vector (l,m, v) comprises a search equilibrium if and only

if it satisfies the first order conditions for the planner’s problem. Consequently, if

(l,m) ∈ arg maxl,m W (cB, cS, l, m), then (l,m, v) comprises an efficient search equi-

librium, where vb and vs are the Kuhn-Tucker multipliers associated with steady state

constraints of the planner’s problem.

4. Discussion and Conclusion

This paper considered a frictional market where buyers and sellers, with unit de-

mand and supply, search for trading opportunities. The analysis focused on explicit

search frictions, allowed for two-sided incomplete information. In this context, a

non-trivial, full trade search equilibrium was shown to exist, equilibria characterized

as the values that satisfy the first order conditions for a non-linear planner’s (opti-

mization) problem, and necessary and sufficient conditions provided for the existence

of efficient search equilibria under complete information. Under an additive separa-

bility condition, these results were shown to generalize to the two-sided incomplete

information setting. Also, search equilibria were shown to converge to a competitive

equilibria as frictions become small. However, inefficiencies could remain at the limit:

the limiting competitive equilibrium can be an equilibrium for only a proper subset

of the full economy under consideration. Nevertheless a sequence of search equilibria

that converges to the competitive equilibrium of the full economy was also shown to

exist.

Appendix A. Omitted Proofs

A.1. Proof of Proposition 1. Define a strategy profile σ such the proposer i offers

utility vj to the responder, if fij−vi−vj ≥ 0 and demands utility vi, if fij−vi−vj < 0
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and the responder accepts with probability mij. Also, strategy profile σ prescribes

that all agents of type i enter if vi > 0, a measure li
∑

j mijpj enters if agents of that

type are indifferent to entering and no agents enter if they strictly prefer not to enter.

This strategy is sub-game perfect, solves the maximization problem for each agent

and the market remains in steady state. Also, due to the constant surplus conditions,

v is indeed the value for each type implied by σ and l.

A.2. Proof of Lemma 1. I also prove that if cB ≥ 0 and cS ≥ 0, then the maximized

value of the problem with the additional constraint LS = LB, equals the maximized

value for the planner’s problem.

Assume cB > 0 and cS > 0. To show LS = LB suppose to the contrary that

LS > LB. By definition, the number of matches that can be formed between buyer

b and seller s is limited by the steady state number of matches formed between the

two types, i.e., lbls/ max {LS, LB} = lbls/LS. However, scaling down the measure of

each type of seller in the market by LB/LS will leave the number of matches between

any two types b and s constant while decreasing the search costs by (LS − LB) cS and

thus showing that LS = LB at an optimum. If on the other hand cS = 0, then it is

possible that a steady state measure l with LS > LB solves the planner’s problem.

However then, the measure l̂ obtained by scaling down the sellers by LB/LS is also

a maximizer since this scaling neither affects the search costs nor the measure of per

period matches that are formed.

A.3. Proof of Proposition 2. Suppose that max {cB, cS} > 0. The maximum

number of matches formed in a period is bounded above by the maximum number of

agents entering the economy, i.e., max {|B| , |S|}. So, the maximum production in a

period is bounded by (maxb,s fbs) (max {|B| , |S|}). Consequently, any solution of the

planner’s problem must satisfy

(27) LBcB + LScS ≤ (maxb,s fbs) (max {|B| , |S|}) .

Imposing the inequality LBcB + LScS ≤ (maxb,s fbs) (max {|B| , |S|}) + ε, with ε > 0,

in addition to LB = LS to the planner’s problem ensures that the constraint set

for the planner’s problem is compact and the Weierstrass’ Theorem implies that a

maximizer exists. It is straight forward to see that any optimizer for this problem

with the additional constraints, also solves the planner’s problem. The first additional

constraint LBcB + LScS ≤ (maxb,s fbs) (max {|B| , |S|}) + ε is never binding because,
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if it were to bind, this would imply that the maximum value is strictly negative.

However, choosing LS = LB = 0 ensures a non-negative value. Also, Lemma 1 showed

that imposing the constraint LB = LS does not affect the value of the maximization

problem.

Suppose that cB = cS = 0. Let q solve

(28) P = max
q

∑
B×S

qbsfbs

subject to ∑
b

qbs ≤ 1,(29) ∑
s

qbs ≤ 1,(30)

0 ≤ qbs ≤ 1.(31)

This is a well defined linear program and consequently has a solution. In particular,

this is exactly the Assignment Problem. Let q solve the above linear program and pick

any l such that lbps ≥ qbs for all b and s and choose mbs to ensure that mbslbps = qbs.

The chosen m and l is feasible for the maximization problem W (0, 0, l, m) hence

W (0, 0, l, m) ≥ P . However, any qbs = mbslbps for (l,m) ∈ arg maxl,m W (0, 0, l, m)

is feasible for the above problem so W (0, 0, l, m) ≤ P . This implies that if q is

a maximizer of the above problem and mbslbps = qbs for all b and s then (l,m) ∈
arg maxl,m W (0, 0, l, m) showing that arg maxl,m W (0, 0, l, m) 6= ∅.

A.4. Proof of Theorem 1. The hypothetical planner’s problem can be reformu-

lated, under the assumption that LB = LS = L as follows:

(32) max
L,p,m

∑
B×S

Lpbpsmbsfbs − L
cS

1− β
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subject to ∑
s
Lpbpsmbs ≤ 1 for all i (vb)(33) ∑

b
Lpbpsmbs ≤ 1 for all j (vs)(34) ∑

b
pb = 1 (µB)(35) ∑

s
ps = 1 (µS)(36)

mbs ≤ 1 for all b and s (ωbs)(37)

mbs ≥ 0 for all b and s (χbs)(38)

pb ≥ 0 for all b (γb)(39)

ps ≥ 0 for all s (γs)(40)

The Lagrangian for the problem,

L = −L
cS

1− β
+
∑

B×S
Lpbpsmbsfbs +

∑
b
vb

(
1−

∑
s
Lpbpsmbs

)
+
∑

s
vs

(
1−

∑
b
Lpbpsmbs

)
+ µB

(
1−

∑
b
pb

)
+ µS

(
1−

∑
s
ps

)
+
∑

B×S
ωbs (1−mbs) +

∑
B×S

χbsmbs +
∑

b
γbpb +

∑
s
γsps

(41)

where vb, vs, ωbs, χbs, γb and γs are non-negative. The existence of a solution

(L, m, p) to the above maximization problem follows from Proposition 2. First I

show if (L, m, p, v) satisfy the first order conditions for the maximization problem,

then lb = rpbL, ls = psL, m and multipliers vb and vs satisfy Conditions 1 through 4

and therefore comprise a search equilibrium.

The vector v is non-negative since its elements are multipliers associated with

inequality constraints and thus the Individual Rationality condition is satisfied.

Taking the first order condition with respect to mbs and rearranging gives

Lpbpsfbs − Lpbpsvb − Lpbpsvs − ωbs + χbs = 0(42)

Lpbps (fbs − vb − vs) = ωbs − χbs(FOC m)
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Taking the first order condition with respect to pb implies∑
s
Lpsmbsfbs − vb

∑
s
Lpsmbs −

∑
s
vsLpsmbs − µB + γb = 0(43) ∑

s
psmbs (fbs − vb − vs) =

µB − γb

L
,(FOC pb)

and likewise for seller s:

(FOC ps)
∑

b
pbmbs (fbs − vb − vs) =

µS − γs

L
.

The first order condition with respect to L is

(FOC L)
∑

B×S
pbpsmbs (fbs − vb − vs) =

cS

1− β

The complementary slackness conditions for the problem are

vb

(
1−

∑
s
Lpbpsmbs

)
= 0,(44)

vs

(
1−

∑
b
Lpspbmbs

)
= 0,(45)

ωbs (1−mbs) = 0,(46)

χbsmbs = 0,(47)

γbpb = 0,(48)

γsps = 0.(49)

I show, for agents with pb > 0, equation (FOC m) and complementary slackness

conditions equations (46) and (47 ) together imply the Efficient Bargaining Condition.

Assume fbs−vb−vs < 0. This implies that Lpbps (fbs − vb − vs)−ωbs < 0, consequently

χbs > 0 and thus mbs = 0. Assume that fbs − vb − vs > 0. This implies that ωbs > 0

and consequently mbs = 1.

I show that the first order condition with respect to p and L in conjunction with

complementary slackness conditions (48) and (49) imply the Constant Surplus Con-

dition. If pb > 0, equation (48) implies that γb = 0. Consequently substituting µB/L

for
∑

s psmbs (fbs − vb − vs) for agents with pb > 0 into equation (FOC L) delivers∑
b
pb

∑
s
psmbs (fbs − vb − vs) =

cS

1− β
(50) ∑

b
pb

µB

L
=

cS

1− β
(51)
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and consequently µB/L = cS

1−β
. Going through the same steps for a seller shows that

µS/L = cS

1−β
. Substituting for µB and µS in (FOC pb) and (FOC ps) implies that

∑
s
psmbs (fbs − vb − vs) ≤

cS

1− β
for all buyers b,(52) ∑

b
pbmbs (fbs − vb − vs) ≤

cS

1− β
for all seller s.(53)

For buyers and sellers with pb > 0 and ps > 0, the previous inequalities holds with

equality. Dividing both sides or equation (80) by r shows that
∑

s ps/rmbs (fbs − vb − vs) ≤
cB/β and thus the Constant Surplus Condition is satisfied.

By construction Lpb

∑
s mbsps ≤ 1. Also, equation (44) implies that if vb > 0, then

1−Lpb

∑
s mbsps = 0 and likewise for a seller. Consequently, equations (44) and (45)

imply the Steady State Condition.

Now I show if (l,m, v) is a search equilibrium, then it satisfies the first order

and complementary slackness conditions for the planner’s problem. Let v be the

multipliers for the steady state constraints and let µS/L = cS/(1−β), µB/L = cB/β,

χbs = max{−sbs, 0}, ωbs = max{sbs, 0}, γb = cB − β
∑

psmsbsbs ≥ 0 and γs =

cS − (1 − β)
∑

pbmsbsbs ≥ 0. Given these definitions, it is straight forward to verify

that the first order and complementary slackness conditions are all satisfied.

Finally, I show the existence of Kuhn-Tucker multipliers, that satisfy the first or-

der conditions, at any maximizer of the planner’s problem. In order to show that

Kuhn-Tucker multipliers exists, I show that the Mangasarian-Fromovitz constraint

qualification is satisfied. The Mangasarian-Fromovitz constraint qualification can

be stated as follows: Assume x∗ solves maxx f (x) subject to inequality constraints,

gi (x) ≥ 0, i = 1, ..., k, and equality constraints, hj (x) = 0, j = 1, ...,m. If the

gradients of the equality constraints, i.e., ∇hj (x∗), j = 1, ...,m, are linearly indepen-

dent and there exists a vector d such that ∇gi (x
∗)T d > 0 for all binding inequality

constraints and ∇hj (x∗)T d = 0 for all equality constraints, then there exists a vector

µ 6= 0 such that ∇f (x∗) +
∑

i µi∇gi (x
∗) +

∑
j µj∇hj (x∗) = 0 (see Bertsekas (2003)

for further detail).

In the current setting the gradient of a constraint gi is a column vector of the

following form
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(54)

∇gi (L, p, m) =

(
∂gi

∂L
,

∂gi

∂pb1

, ...,
∂gi

∂pb

, ...,
∂gi

∂p|B|
,

∂gi

∂ps1

, ...,
∂gi

∂ps

, ...,
∂gi

∂p|S|
,

∂gi

∂m11

, ...,
∂gi

∂mbs

, ...,
∂gi

∂m|B||S|

)
The planner’s problem has two equality constraints; 1−

∑
b pb = 0 and 1−

∑
s ps = 0.

The gradients of these constraints are of the following form

∇

(
1−

∑
b

pb

)
= (0,−1, ...,−1, ...,−1, 0, ..., 0, ..., 0, 0, ..., 0, ..., 0)(55)

∇

(
1−

∑
s

ps

)
= (0, 0, ..., 0, ..., 0,−1, ...,−1, ...,−1, 0, ..., 0, ..., 0)(56)

and consequently clearly linearly independent. Assume without loss of generality

that, pb1 > 0 and ps1 > 0, i.e., the non-negativity constraint is not binding for the

first buyer and the first seller. I will now construct the vector d. Pick the entry in

the vector d that corresponds to pb equal to ε > 0 if pb = 0 and equal to 0, if pb > 0

for all b 6= 1. Pick the entry for pb1 to ensure that ∇ (1−
∑

b pb)
T d = 0. Proceed

similarly for the ps entries and consequently ∇ (1−
∑

s ps)
T d = 0 Pick the entry in

d that corresponds to mbs equal to ε if mbs = 0, equal to −ε, if mbs = 1 and equal

to zero otherwise. Observe that all entries in the vector d, except d1 the entry that

corresponds to L, are now determined. The inner product between d and the gradient

of binding non-negativity constraints are equal to ε and consequently strictly positive.

Also, for a biding constraint of the form 1−mbs ≥ 0, the inner product is also equal

to ε and consequently positive. The only constraints left to check are of the form

1−
∑

b Λpbpsmbs ≥ 0 for seller s or 1−
∑

s Λpbpsmbs ≥ 0 for buyer b. For example, if

buyer 1′s constraint is binding, then the gradient is as follows

−

(∑
s

m1spb1ps,
∑

s

Lm1sps, ..., 0, ..., 0, Lm11pb1 , ..., Lm1spb1, ..., Lm1|S|pb1 , Lpb1ps1 , ..., 0, ..., 0

)
=

−

(
1

L
,
∑

s

Lm1sps, ..., 0, ..., 0, Lm11pb1 , ..., Lm1spb1, ..., Lm1|S|pb1 , Lpb1ps1 , ..., 0, ..., 0

)
(57)

and ∇ (1−
∑

s Lpb1psm1s)
T d = −d1

L
− εA. Consequently, we can pick d1 sufficiently

negative in order to make ∇ (1−
∑

Lpbpsmbs)
T d > 0 for all b and s.
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A.5. Proof of Corollary 2. Fix ls to equal the search equilibrium measure of sellers

and consider the linear program

(58) P = max
pb,q

∑
B×S

qbsfbs − LS

(∑
b
pb

)
cB

subject to ∑
s
qbs ≤ 1 for all b,(59) ∑

b
qbs ≤ 1 for all s,(60)

qbs − pbls ≤ 0 for all b and s,(61) ∑
b
pb ≤ 1,(62)

qbs ≥ 0,(63)

pb ≥ 0.(64)

Claim 1. If q and pb solve the above linear program, then any mbs defined to satisfy

qbs = mbspbls, and lb = pbLS is an element of arg maxlb,m W (cB, cS, lb.ls, m).

Assume that q and pb solve the above linear program, then mbs defined to satisfy

qbs = mbspbls and lb = pbLS is feasible for the maximization problem W (cB, cS, lb.ls, m),

hence maxlb,m W (cB, cS, lb.ls, m) ≥ P.

If lb, mbs ∈ arg maxlb,m W (cB, cS, lb.ls, m) , then lb ≤ ls since if lb > ls we could

scale the measure of buyers down without effecting the value. This implies that

pb = lb/LS and qbs = mbspbls is feasible of the above linear program and so P ≥
maxlb,m W (cB, cS, lb.ls, m) . Showing that P = maxlb,m W (cB, cS, lb.ls, m) and proving

the claim.

Claim 2. The search equilibrium distribution of buyers pb and measure of matches

qbs = mbspbls solves the linear program.

The search equilibrium proportion of buyers pb and measure of matches qbs =

mbspbls is feasible for the above program consequently
∑

B×S mbspblsfbs − LScB ≤ P.

The dual to the above linear program is as follows:

(65) D = min
ν,µ,ω

∑
b
νb +

∑
s
νs + µ
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subject to

νb + νs + ωbs ≥ fbs for all b and s,(66)

µ−
∑

s
lsωbs ≥ −cBLS for all b,(67)

νi ≥ 0 for all i ∈ I,(68)

ωbs ≥ 0 for all b and s.(69)

The search equilibrium values vb, vs, the surplus s+
bs = max {fbs − vs − vb, 0} and

µ = cSLS are feasible for the dual since vb + vs + s+
bs ≥ fbs for all b and s and due to

the constant surplus condition
∑

s lss
+
bs = LS

∑
s pss

+
bs ≤ (cB + cS) LS = cB

β
LS for all

b. This implies that
∑

b vb +
∑

s vs + cSLS ≥ D. However,
∑

b vb +
∑

s vs + cSLS =∑
B×S mbspblsfbs − cBLS ≥ D = P. This implies that

∑
B×S mbspblsfbs − cBLS = P

showing that the search equilibrium distribution of buyers pb and measure of matches

qbs = mbspbls solves the linear program.

Define lb = pb

∑
s ls. Claim 1 and Claim 2 together imply that

(70) (lb, m) ∈ arg maxlb,m
W (cB, cS, lb.ls, m) .

The argument for (ls, m) ∈ arg maxls,m W (cB, cS, lb.ls, m) is symmetric.

A.6. Proof of Lemma 4. Suppose that l, m and v satisfy Conditions 1 through 4.

I show that there exists a search equilibrium (σ, l) where values are given by v and

the match probabilities by m.

Define a strategy profile σ as follows: Let the number of agents of type i entering

the economy equal li
∑

j pjmij. The proposer truthfully announces his/her type to

the responder and makes a transfer offer. For a buyer b let the transfer offer made to

a seller of good x̂

tb,x̂ = vs′ + rs′ , if fbs′ − vb − vs′ ≥ 0, and(71)

tb,x̂ = hbs′ − rb − vb, if fbs′ − vb − vs′ < 0,(72)

where s′ is any seller with xs′ = x̂. By Lemma 3, vs′ +rs′ = vs +rs and fbs′−vb−vs′ =

fbs − vb − vs for all sellers s′ and s who own the same good x̂. For a seller s let the



34 ALP E. ATAKAN

transfer offer made to any buyer who belongs to segment x̂

ts,x̂ = hb′s − rb′ − vb′ , if fb′s − vs − vb′ ≥ 0, and(73)

ts,x̂ = vs + rs, if fb′s − vs − vb′ < 0,(74)

where b′ is any buyer with xb′ = x̂. Again by Lemma 3, hb′s − rb′ − vb′ = hbs − rb − vb

and fb′s − vs − vb′ = fbs − vb − vs for all buyers b′ and b who belong to the same

segment x̂. Let buyer b accept an offer from a seller s with probability msb and the

seller accept an offer from the buyer with probability mbs.

The strategy profile σ defined above and l is compatible with a steady state since

the match probabilities that I used to define this strategy profile, satisfy the Steady

State Condition by assumption. Since a buyer matches with any seller with whom

she has positive surplus and extracts all the rent when she is a proposer and gets

her continuation value when she is responder, her decisions are optimal, and likewise

for sellers. Thus no agent has an incentive to deviate from the prescribed strategies.

Also, since the revelation of type does not affect the matching decision when the

surplus is strictly positive, the proposers do not have an incentive to misreport.

Now I show that if σ and l is a search equilibrium under ASP , then l, m and

v satisfy Conditions 1 through 4. Observe that the strategy profile σ is available to

agents under complete information. Since l, m and v are compatible with equilibrium,

values satisfy the Individual Rationality Condition and match probabilities and the

steady state measure satisfy the Steady State Condition.

By Lemma 3, a proposer can extract all surplus from a responder by conditioning

only on the responder’s segment, if the responder is a buyer, and conditioning only

on the good, if the responder is a seller. If sbs = fbs − vs − vb > 0, then since the

proposer can extract all the surplus, a meeting between such a pair must result in a

certain match, i.e., mbs = 1. Also, if sbs < 0, then the offer made by the proposer can

not satisfy the responder and thus mbs = 0. Consequently, the Efficient Bargaining

Condition holds.

By the reasoning in the previous paragraph, if sbs > 0, then ts,xb
= hbs − rb − vb

and tb,xs = rs + vs. Substituting these transfers into the recursive equation for values
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gives

vs = max

{
−cS + (1− β)

∑
b

pbmsb(hbs − rb − vb − rs − vs) + vs, 0

}
and(75)

vb = max

{
−cB + β

∑
s

psmbs(hbs − rs − vs − rb − vb) + vb, 0

}
,(76)

and rearranging shows that the Constant Surplus Condition holds.

A.7. Proof of Theorem 2.

Lemma 5. Assume that cS = cB = 0. Also, assume if seller s and buyer b meet, then

xs is observed by the buyer, however xb, rb and rs are private information. If σ and

l comprise a search equilibrium, then the equilibrium l, m and v satisfy Conditions 1

through 4. Conversely, if l, m and v satisfy Conditions 1 through 4, then there exists

σ such that l and σ comprise a search equilibrium and equilibrium values are given

by v.

Assume l, m and v satisfy Conditions 1 through 4. I outline strategy σ̂ such that σ̂

and l comprise a search equilibrium under private information where values are given

by v. The Constant Surplus Condition implies that

(77)
∑

j

pjmij(fij − vi − vj) = 0

for all i and the Efficient Bargaining Condition implies that if mbs > 0, then fbs −
vb − vs ≥ 0. Consequently, fbs − vb − vs ≤ 0 for all b and s, and fbs − vb − vs =

hbs − rs − rb − vb − vs = 0 for b and s with mbs > 0.

Define strategy σ̂ such that a seller, when chosen as the proposer, proposes to sell

their good for t = vs + rs and truthfully announce his/her type s to the responder.

The buyer responds by accepting the offer with probability msb. By Lemma 2, all

sellers endowed with the same good propose the same transfer. Also, the specified

transfer is the highest amount any buyer would be willing to pay for the particular

good, given values v. Consequently, the seller has neither an incentive to misrepresent

her type nor to deviate from the prescribed transfer offer. Also, a buyer cannot gain

by deviating, since for a buyer with msb > 0, the proposed transfer leaves the buyer

indifferent between accepting and rejecting.
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When a buyer proposes, he/she offers to pay t = hbs−rb−vb and announces his/her

type b truthfully. The seller responds by accepting with probability mbs. Observe that

all buyers who have a non-negative surplus with seller s, offer the same transfer and

this is the lowest transfer that will be accepted by any seller who owns the same good

as seller s. Moreover, the buyer cannot get more surplus than under the specified

transfer offer, given values v. Consequently, the buyer has neither an incentive to

misrepresent her type nor to deviate from the prescribed transfer offer. Also, a seller

cannot gain by deviating, since for a seller with mbs > 0, the proposed transfer leaves

the seller indifferent between accepting and rejecting.

Since the matching probabilities and the steady state measure satisfy the Steady

State condition, the market is in a steady state. Also, using the strategies above

implies that the values are given by v since the transfers and acceptance decisions are

identical to the full information case.

I show equilibrium l, m and v satisfy Conditions 1 through 4. The Individual

Rationality and the Steady State Conditions are obviously satisfied. The Bellman

equation in equilibrium are

0 = β
∑

b

pbmbs(tb,xs − rs − vs) + (1− β)
∑

b

pbmsb(ts − rs − vs) and(78)

0 = β
∑

s

psmbs(hbs − tb,xs − rb − vb) + (1− β)
∑

s

psmsb(hbs − ts − rb − vb)(79)

Consequently, if mbs > 0, then tb,xs − rs − vs = 0 and hbs − tb,xs − rb − vb = 0, also if

msb > 0, then hbs − ts − rb − vb = 0 and ts − rs − vs = 0. Substituting gives

0 = (1− β)
∑

b

pbmsb(hbs − rs − vs − rb − vb) and(80)

0 = β
∑

s

psmbs(hbs − rs − vs − rb − vb)(81)

showing that the Constant Surplus Condition is satisfied.

To show that the Efficient Bargaining Condition holds, I show that fbs−vs−vb ≤ 0

for all b and s. Assume that there exists a pair b and s such that fbs − vs − vb > 0.

Then the proposer can demand vi + ε while ensuring the acceptance by giving the

responder vj +ε. The proposer will always do so in a perfect equilibrium consequently

mij = 1. However, this contradicts the Constant Surplus Condition that was shown

to hold in equilibrium since the pair b and s meet with strictly positive probability.
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A.8. Proof of Theorem 4. For any c, search equilibrium p and L solve the opti-

mization problem

(82) min
pb,ps,L

2cL

subject to

qbs ≤ pbpsL(83) ∑
pb = 1(84) ∑
ps = 1(85)

where qbs is a fixed and equals the number of b and s matches that are formed in a

search equilibrium, i.e., qbs = mbspbpsL. Showing that search equilibrium p and L solve

the problem is immediate since the surplus values s, p and L satisfy the first order

conditions, the inequality constraints are quasiconcave and the equality constraints

as well as the maximized function are linear. However, observe that pb = 1
|B| , ps = 1

|S|
and L = |B|× |S| is always a feasible option. Consequently, 2cL ≤ 2c (|B| × |S|) and

hence L ≤ |B| × |S|.

A.9. Proof of Proposition 3. The Lagrangian for the problem is

L = − (LB + LS) c + N (LB, LS)
∑

B×S
pbpsmbsfbs +

∑
b
vb

(
1−N (LB, LS)

∑
s
pbpsmbs

)
+
∑

s
vs

(
1−N (LB, LS)

∑
b
pbpsmbs

)
+ µB

(
1−

∑
b
pb

)
+ µS

(
1−

∑
s
ps

)
+
∑

B×S
ωbs (1−mbs) +

∑
B×S

χbsmbs +
∑

b
γbpb +

∑
s
γsps.

(86)

The concavity of N implies that LB = LS. I show that any vector (l,m, v) that

satisfies the first order conditions also satisfy Conditions 1 through 4. The first order

conditions with respect to m is

(87) N (LB, LS) pbps (fbs − vb − vs) = ωbs − χbs.

This first order condition implies the Efficient Bargaining Condition. The first order

conditions with respect to pb is

(88) N (LB, LS)
∑

s
psmbs (fbs − vb − vs) = µB − γb
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and likewise for ps

(89) N (LB, LS)
∑

b
pbmbs (fbs − vb − vs) = µS − γs

The first order conditions with respect to LB and LS are

(90) NB (LB, LS)
∑

B×S
pbpsmbs (fbs − vs − vb) = c

(91) NS (LB, LS)
∑

B×S
pbpsmbs (fbs − vs − vb) = c

Substituting gives µB = N(LB ,LS)
NB(LB ,LS)

c and µS = N(LB ,LS)
NS(LB ,LS)

c. Also, the first order condi-

tions with respect to LB and LS imply NB (LB, LS) = NS (LB, LS) . Also by the first

order condition with respect to pb

(92)
N (LB, Ls)

LB

∑
s
psmbs (fbs − vb − vs) =

N (LB, LS)

NB (LB, LS) LB

c− γb

LB

Because N is homogeneous of degree 1, NB (LB, Ls) LB+NS (LB, LS) LS = N (LB, LS)

and since NB (LB, LS) LB = NS (LB, LS) LS,

(93)
N (LB, LS)

NB (LB, LS) LB

= 2.

Consequently

(94)
N (LB, LS)

LB

∑
s
psmbs (fbs − vb − vs) ≤ 2c

for all b and with equality for pb > 0. This shows that the Constant Surplus Condition

is satisfied. Observe the Individual Rationality Condition and Steady State Condition

are automatically satisfied. The existence of the Kuhn-Tucker multipliers follows from

the same argument as the one provided for Theorem 1 in the appendix.

Proving that any search equilibrium (l,m, v) satisfies the first order and comple-

mentary slackness conditions for the planner’s problem is analogous to Theorem 1.

Observe that Lemma 2 is valid under the matching specification N and so L = LB =

LS Let v be the multipliers for the steady state constraints and let µS/L = c/2,

µB/L = c/2, χbs = max{−sbs, 0}, ωbs = max{sbs, 0}, γb = c − 1
2

∑
psmsbsbs ≥ 0 and

γs = c − 1
2

∑
pbmsbsbs ≥ 0. Given these definitions, it is straight forward to verify

that the first order and complementary slackness conditions are all satisfied.
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