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Abstract

A decision maker (DM) must address a series of problems over time. Each pe-

riod, a random case arises and the DM must make a yes-or-no decision, which we

call a ruling. She is uncertain about the correct ruling until she conducts a costly

investigation. A ruling establishes a precedent, which may be costly to violate in

the future. We compare the DM’s incentive to acquire information, the evolution

of standards and the social welfare under two institutions: nonbinding precedent

and binding precedent. Under nonbinding precedent, the DM is not required to

follow previous rulings, but under binding precedent, she must follow previous

rulings where applicable. We find that, compared to nonbinding precedent, the

incentive for information acquisition is stronger under binding precedent in ear-

lier periods when few precedents exist, but as more precedents are established

over time, the incentive for information acquisition becomes weaker under bind-

ing precedent. Even though erroneous rulings may be perpetuated under binding

precedent, social welfare can be higher because of the more intensive investigation

conducted early on.
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In our progress towards political happiness my station is new; and, if I may use the

expression, I walk on untrodden ground. There is scarcely any part of my conduct

wch. [sic] may not hereafter be drawn into precedent. Under such a view of the duties

inherent to my arduous office, I could not but feel a diffidence in myself on the one

hand; and an anxiety for the Community that every new arrangement should be made

in the best possible manner on the other.

George Washington, 9 January 1790

1 Introduction

Decision makers within organizations typically face and must address a series of

problems under uncertainty over time. For example, an organization’s executive could

be tasked with deciding whether to accept or reject a series of project proposals, and

government agencies such as the FDA evaluate proposals for approval or rejection. For

reasons of consistency, fairness, predictability and public confidence, a cost is often

associated with treating similar cases differently. Thus, a yes-or-no decision (which

we call a ruling) regarding a current case may affect future decisions by creating a

precedent. Acquiring the information needed to make the correct ruling is costly, but

these decisions may have far-reaching consequences through two channels. First, the

information acquired may reveal some general principle applicable not just to the case

at hand but to future cases as well. Second, as the ruling on the current case becomes

a precedent, the decision maker may incur some cost in making a different ruling on a

future case that has similar characteristics, and this cost associated with overturning

a precedent may prevent the decision maker from making certain rulings, even when

it becomes clear that an erroneous ruling was made on a previous case.

This kind of dynamic problem solving has a broad range of applications, including

judge-made law, which provides a natural application for our study because of the

central role of precedents in common law systems. For example, the U.S. Bankruptcy

Code allows firms to restructure their debt under Chapter 11 by confirming a reorga-

nization plan. This can be achieved if all classes of creditors and interest holders vote

to accept the plan. Without the consent of all classes, confirmation is possible only if

the reorganization plan is judged to be “fair and equitable” to each class that voted

against it. However, the definition of “fair and equitable” within the Bankruptcy Code

is not entirely clear and the standard has therefore been set gradually over time by the
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courts on a case-by-case basis.

Another reason that judge-made law provides a good application for our study is

variation within the legal system in the effects that precedents can have on future

cases that are similar. United States law, for example, has two kinds of precedents:

persuasive and binding. Under a persuasive precedent, a judge is not required to follow

previous rulings but can use the information acquired in the ruling of a previous case.

Under binding precedent, in contrast, the principle of stare decisis requires that a judge

must follow previous rulings when they apply.1 Since our study’s primary goal is to

understand how the dynamic consequences of precedents affect the decision maker’s

incentive to acquire information and in turn the overall qualities of the decisions, the

institutions of common law system provide a fitting framework to anchor our analysis.

First employing a simple three-period model and then an infinite-horizon model, we

analyze the DM’s incentives. Under both models, we find that in early periods, when

few precedents have been established, the DM’s incentives to acquire information are

stronger if precedents are binding. But as more precedents are established over time,

the incentive to acquire information becomes weaker under binding precedents. Our

results suggest that decision makers spend more time and resources deliberating on

cases when an organization is in an early stage of development and less when its rules

and standards have matured. Furthermore, this contrast is especially pronounced when

precedents are binding.

To see why, note that the cost of making a wrong decision is higher under binding

precedent since the DM has to follow precedents in the future when they are binding

even if the previous rulings that established these precedents turn out to be erroneous.

Because of the long-term repercussions of an early erroneous ruling when precedents

are binding, a DM who faces few precedents is more inclined to acquire information

to avoid making mistakes. (This point is illustrated by the “diffidence” and “anxi-

ety” expressed by the first U.S. President George Washington in a letter to historian

Catharine Macaulay.) As more precedents are established over time, however, the

value of information becomes lower under binding precedent since the DM, now bound

by previous rulings, may not be able to use the newly acquired information, and is

1In the U.S. legal system, a lower court is bound by a precedent set by a higher court in its
region, but cases decided by lower courts or by peer or higher courts from other jurisdictions are only
persuasive and not binding. We note that both kinds of precedents exist in the legal system, but
modeling the legal hierarchy is beyond the scope of our study. For models of judicial learning and
precedent that incorporate the legal hierarchy, see, for example, Bueno De Mesquita and Stephenson
[2002] and Callander and Clark [2017].
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therefore discouraged from acquiring information under binding precedent.2 An in-

teresting parallel is the “two-phase” process discussed in March and Simon [1958] (p.

208): when a new organizational unit is created to develop a new program, there is

“a spurt of innovative, program-developing activity” which automatically diminishes

as the program is elaborated and the unit is “bound and hampered by traditions and

precedents.”

The appropriate social welfare criterion for our model is not obvious since the

DM is the only agent explicitly modeled. Provided the rest of society does not bear

the cost of information acquisition but cares about the rulings, the payoffs derived

from the ruling decisions may constitute a reasonable measure of the social welfare.3

For example, judicial decision-making can be viewed as a principal-agent problem in

which society delegates important decisions to courts. Since the court’s rulings have

broad implications that affect the society at large, it would be misleading to use the

DM’s payoff alone to measure the social welfare. When using payoffs from rulings

as our welfare measure, we find that the social welfare can be higher under binding

precedent than under nonbinding precedent. This is because the social benefit coming

from the more intensive investigation conducted by the DM early on can outweigh

losses attributable to the persistent mistakes in ruling potentially arising under binding

precedent. Our result shows that increasing the cost of violating precedent can provide

an effective way to strengthen a DM’s incentive to gather information and improve the

quality of rulings.

Although our measure of social welfare excludes the cost of investigation, this cost

nonetheless indirectly affects it through the effects on incentives. When the cost of

investigation is either very high or very low, investigations undertaken and ruling de-

cisions are identical under nonbinding and binding precedent, resulting in the same

welfare. In the intermediate range, when the cost is relatively low, the gain from more

intensive early investigation under binding precedent dominates, resulting in higher so-

cial welfare. However, when the cost is relatively high, this gain does not compensate

for the losses resulting from perpetuating erroneous rulings. As a result, the social

welfare is lower under binding precedent in this case.

2Even though the lack of information acquisition seems consistent with the current U.S. President’s
behavior, we do not believe that our model provides a good explanation for it.

3The seminal paper by Tullock [1971] discusses the tension between the private cost of information
acquisition and the public benefit of correct decisions, which results in a problem of under-investment
in information acquisition, but it does not provide any solutions. For a recent synthesis of possible
solutions to this problem, see Stephenson [2010].
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Apart from institutions for which costs of violating precedent are heterogeneous,

such as those in the legal system, other interpretations make our analysis applicable.

Specifically, the cost of violating precedent may correspond to the degree of trans-

parency in the decision making process. DMs whose actions are hidden face no penalty

in treating similar problems differently. However, a DM whose actions are visible to

the public can be held accountable for inconsistency or unfairness when overturning a

precedent. In light of this, our findings demonstrate a social benefit associated with

transparency in decision making that has not being pointed out in the literature. By

making a violation of precedent public and thus punishable, transparency encourages

more deliberate and careful initial decision making.4 Indeed, some organizations choose

to publish their decisions and refer to these decisions as precedents. For example, the

U.S. Department of Justice Executive Office for Immigration Review publishes prece-

dent decisions, and some Australian universities publish their transfer credit decisions

in an online database.5

Related literature

The study most closely related to ours is Baker and Mezzetti [2012], which ana-

lyzes the process by which a long-lived court makes rulings under uncertainty when

previous rulings become precedent. Unlike our study, they do not explicitly distinguish

between nonbinding precedent and binding precedent and, in effect, analyze only non-

binding precedent. The focus of Baker and Mezzetti [2012] is to show how analogical

reasoning arises endogenously as optimal behavior of a DM when resources are limited.

In contrast, the focus of our study is the comparison of a DM’s incentives to acquire

information under nonbinding versus binding precedent.

Viewed more broadly, our paper is related to the literature on judicial decision-

making in a dynamic setting. Rasmusen [1994] shows that in a repeated games setting,

equilibrium stare decisis can arise even if a judge’s own preference goes against previous

rulings because it is the only way to ensure that his own rulings are followed by fu-

ture judges.6 More recently, Cameron, Kornhauser, and Parameswaran [2017] consider

a repeated game among the judges in a heterogenous bench and establish a possible

4Increasing the transparency of an agent’s action, or of the consequence of an agent’s action, can
have subtle effects. See, for example, Prat [2005], Fox [2007], Levy [2007], Fox and Van Weelden
[2012].

5See https://www.uscis.gov/laws/precedent-decisions and http://www.uq.edu.au/uqabroad/uq-
credit-precedent-database.

6Kornhauser [1989] investigates other reasons why a court might adopt stare decisis.
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equilibrium partial stare decisis in which judges adhere to a common rule for clear-cut

cases, but adopt their preferred rules for contestable cases. Daughety and Reinganum

[1999] and Talley [1999] show that inefficient informational cascade can arise in equi-

librium when courts have private information and learn from the decisions of previous

courts. Levy [2005] looks at a model in which judges are driven by career concerns,

that is, they care about their reputation of being able to correctly apply law, and not

about social efficiency. In the model of Levy (2005), binding precedent increases the

probability that a ruling contradicting precedent will be subject to reversal, which is

costly for the judge and therefore causes her to behave inefficiently. Gennaioli and

Shleifer [2007] provide a model in which the law evolves when judges distinguish cases

from precedents by adding new material dimensions while at the same time endorsing

the existing precedent. In Anderlini, Felli, and Riboni [2014], stare decisis is a tool

for commitment which provides a benefit by alleviating time-inconsistent preferences

of the court.

A primary insight obtained through our study is that although mistakes may per-

petuate when overruling a precedent is costly, it is precisely this ex post inefficiency

that motivates the decision maker to acquire more information so as to avoid making

the mistakes in the first place. Our paper is therefore connected to a strand of litera-

ture showing how ex post inefficient rules provide incentives for agents to gather costly

information, leading to better decision-making overall. Li [2001] shows that it can be

optimal for a group to commit to a “conservative” decision rule that biases against

the alternative favored by the group’s common prior because it alleviates the problem

of free-riding in information acquisition among the group’s members. Szalay [2005]

investigates how the set of feasible actions affects an agent’s decision regarding how

much information to acquire. He finds that it may be optimal for the principal to give

only extreme options to the agent to motivate him to collect more information.7

The remainder of this paper is organized as follows. In the next section, we present

our model. In section 3, we discuss a three-period model to illustrate some of the

intuition before analyzing the infinite-horizon model in section 4. Then, in section 5,

we compare the social welfare under nonbinding and binding precedents. In section

6, we discuss various extensions of our model and conclude. Appendix A contains the

proofs and Appendix B presents our formal results on partial learning.

7In contrast, in Aghion and Tirole [1997], Baker, Gibbons, and Murphy [1999] and Armstrong
and Vickers [2010], to motivate the agent to exert more effort to acquire information, the principal
allows a larger set of options, including some that are undesirable for the principal.
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2 Model

A decision maker (DM) in an organization regulates a set of activities by permitting

or banning them. In each period, a new case arises which must be decided by the DM.

The DM prefers to permit activities that she regards as beneficial and ban activities

which she regards as harmful.

As in Baker and Mezzetti [2012], we model a case by x ∈ [0, 1]. For example,

the DM could be regulating the duration of non-competition agreements allowed in

employment contracts, and x might correspond to the duration of the non-compete

clause in a given contract. The DM has a threshold value θ such that she regards case

x as socially beneficial and would like to permit it if and only if x ≤ θ. The preference

parameter θ is unknown initially, and we assume that θ is distributed according to a

continuous cumulative distribution function F with support [θ, θ] where 0 ≤ θ < θ ≤ 1.

Denote the case at time t by xt. We assume that the cases are independent across

periods and each has a continuous cumulative distribution function G.8 The precedent

at time t is captured by two numbers Lt and Rt where Lt is the highest case that was

ever permitted and Rt is the lowest case that was ever banned by time t. Assume

that L1 = 0 and R1 = 1, that is, the initial precedent is consistent with the DM’s

preferences and does not impose any mistake in ruling.

In period t, after case xt is realized, the DM chooses whether to conduct an inves-

tigation or not before deciding whether to permit or ban the case. For expositional

simplicity, we assume that the DM permits the case when indifferent between permit-

ting and banning, and conducts an investigation when indifferent between investigating

and not investigating. Suppose that an investigation allows the DM to learn the value

of θ at a fixed cost z > 0.9 The stark form of the learning process assumed here is for

8Having endogenous arrival of cases is interesting but is beyond the scope of our paper. Fox
and Vanberg [2014] analyze a two-period model in which the case heard in the second period is
endogenously determined by the ruling in the first period. In their model, the judges can issue narrow
rulings which stick to the facts at hand, or broad rulings that go beyond. They provide conditions
under which broad rulings are optimal because they increase the informational value of future cases.
Another paper that incorporates endogenous arrival of cases is Parameswaran [2018]. He analyzes
an infinite-horizon model in which judicial learning takes place when a firm experiments in a legally
ambiguous region, and shows that broad ruling tends to inhibit efficient learning.

9We assume that the DM learns about her preference parameter θ through investigation. Alterna-
tively, we can assume that the DM learns about her preferences in terms of the consequences of cases,
but does not know the consequence of a particular case unless she investigates. To illustrate, let c(x)
denote the consequence of a case x and assume that c(x) = x+ γ. The DM would like to permit case
x if c(x) is below some threshold c̄ and would like to ban it otherwise. Suppose that the DM knows
c̄ and observe x, but γ is unknown until the DM investigates. This alternative model is equivalent to
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tractability: it simplifies the analysis significantly since either the DM is fully informed

or her belief is the same as the prior. If learning is partial, then we have to keep track of

the DM’s belief in addition to the precedent as a state variable, which complicates the

analysis significantly. We revisit this issue and extend our analysis to partial learning

in section 6.

Let s = ((L,R), x). For expositional convenience, we refer to s as the state even

though it does not include the information about θ. Let S = [0, 1]3 denote the set of

possible states.

Denote the ruling at time t by rt ∈ {0, 1}, where rt = 0 if the case is banned and

rt = 1 if the case is permitted. After the DM makes her ruling, the precedent changes

to Lt+1 and Rt+1. If xt was permitted, then Lt+1 = max{Lt, xt} and Rt+1 = Rt; if xt

was banned, then Lt+1 = Lt and Rt+1 = min{Rt, xt}. Formally, the transition of the

precedent is captured by the function π : S × {0, 1} → [0, 1]2 where

π(st, rt) =

{
(Lt,min{Rt, xt}) if rt = 0

(max{Lt, xt}, Rt) if rt = 1.
(1)

permitted banned

Figure 1: Evolution of precedents.

We consider two institutions: nonbinding precedent and binding precedent. Under

nonbinding precedent, the DM is free to make any ruling; under binding precedent, the

DM must permit xt in period t if xt ≤ min{Lt, Rt} and must ban xt if xt ≥ max{Lt, Rt}.
To understand this assumption, note that if xt ≤ min{Lt, Rt}, then there must be some

case higher than xt that was permitted in the past and there is no case lower than xt

that was banned in the past, so the only ruling that is consistent with precedent is to

permit xt. Similarly, if xt ≥ max{Lt, Rt}, then there must be some case lower than xt

that was banned in the past and there is no case higher than xt that was permitted in

the past, so the only ruling that is consistent with precedent is to ban xt. Note that

ours.
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under binding precedent, after the DM learns the value of θ, she may be bound to make

certain rulings even if she knows them to be erroneous. If we allow the DM to overturn

precedents once they are found to be erroneous, then the precedents effectively become

nonbinding.10

More generally, we say that a ruling regarding x violates precedent (L,R) if x ≤
min{L,R} and the DM bans x or if x ≥ max{L,R} and the DM permits x. We can

think of the cost of violating precedent to be infinite when it is binding and zero when

it is nonbinding. We focus on these two extremes to highlight the difference in the

incentives that the DM faces.11

Note that, Lt < Rt on the equilibrium path under binding precedent. But it is

possible that Rt < Lt off the equilibrium path; in this case, for xt ∈ (Rt, Lt), the DM

can either permit or ban xt even under binding precedent. This is because if the DM

permits xt, the ruling is supported by precedent since there is a higher case that has

been permitted before, and if the DM bans xt, the ruling is still supported by precedent

since there is a lower case that has been banned before.12

The payoff of the DM from the ruling rt on case xt in period t is given by

u(rt;xt, θ) =

{
0 if xt ≤ θ and rt = 1, or xt ≥ θ and rt = 0,

−`(xt, θ) otherwise,

where `(xt, θ) > 0 for xt 6= θ is the cost of making a mistake, that is, permitting a

case when it is above θ or banning a case when it is below θ. Assume that `(x, θ) is

continuous in x and θ for x 6= θ, strictly increasing in x and strictly decreasing in θ if

x > θ and strictly decreasing in x and strictly increasing in θ if x < θ. (We allow there

to be a discontinuity at x = θ to reflect a fixed cost of making a mistake in ruling.)

For example, if `(x, θ) = f(|x − θ|) where f(y) : R+ → R+ is continuous for y > 0,

strictly increasing, and f(0) = 0, then these assumptions are satisfied.

The dynamic payoff of the DM is the sum of her discounted payoffs from the rulings

10Indeed, legal scholars recognize that it is “an essential feature of any coherent doctrine of stare
decisis” that any overruling should not be solely based on the belief that a prior ruling is erroneous
(Nelson [2001]).

11If we allow the DM to choose in each period whether to make her ruling binding, the analysis
would be the same as the case of nonbinding precedent since the DM would not choose to make her
ruling a binding precedent if she did not conduct an investigation.

12Another way to formalize how binding precedent affects the decision problem is to assume that
the set of feasible actions depends on the precedent. Specifically, under binding precedent (Lt, Rt), if
x ≤ Lt, then the only feasible ruling rt is 1, and if x ≥ Rt, then the only feasible ruling rt is 0. Under
these assumptions on feasible actions, Lt < Rt always holds.
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made in each period net of the cost of violating a precedent and net of the discounted

investigation cost if the DM carries out one. The discount factor is denoted by δ ∈
(0, 1).

Before we analyze the infinite-horizon model, we discuss a three-period model to

illustrate some of the intuition.

3 Three-period model

Suppose there are three periods. We characterize the optimal investigation and

ruling policies for each period using backward induction. We then compare the infor-

mation acquisition incentives under the two institutions.

3.1 Nonbinding precedent

In any period, if the DM has investigated in a previous period, then θ is known

and she permits or bans case x according to θ. If the DM has not investigated in a

previous period, then her belief about θ is the same as the prior. If x < θ, then the

DM strictly prefers to permit the case since x < θ regardless of what the realization of

θ is. Likewise, if x > θ, then the DM strictly prefers to ban the case. For any x ∈ [θ, θ̄],

the difference in expected payoff between banning the case and permitting the case is

given by

Eθ[u(0;x, θ)− u(1;x, θ)] =

∫ θ

x

−`(x, θ)dF (θ)−
∫ x

θ

−`(x, θ)dF (θ).

Given the assumptions on `(x, θ), it follows that Eθ[u(0;x, θ)−u(1;x, θ)] is continuous

and increasing in x. Since Eθ[u(0;x, θ) − u(1;x, θ)] < 0 if x = θ and Eθ[u(0;x, θ) −
u(1;x, θ)] > 0 if x = θ̄, there exists x̃ ∈ (θ, θ̄) such that

∫ x̃

θ

`(x̃, θ)dF (θ) =

∫ θ̄

x̃

`(x̃, θ)dF (θ), (2)

that is, x̃ is the case such that the uninformed DM is indifferent between permitting

and banning. Note that Eθ[u(0;x, θ) − u(1;x, θ)] < 0 for x < x̃ and Eθ[u(0;x, θ) −
u(1;x, θ)] > 0 for x > x̃ which gives us the following result.
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Lemma 1. Under nonbinding precedent, in any period t, if the DM is uninformed, she

permits xt if xt ≤ x̂ and bans xt if xt > x̂.

This characterization of the ruling decision of an uninformed DM under nonbinding

precedent holds not just for the three-period model but for any time horizon.

Now we analyze the DM’s investigation decisions. We say that case x triggers an

investigation if the DM conducts an investigation when the case is x. If DM decides

to investigate in period t, her payoff is −z in period t and 0 in all future periods.

The following lemma says that when the investigation cost is sufficiently low, the

uninformed DM investigates with positive probability in each period; the cases that

trigger an investigation in period t forms an interval; and the interval of investigation

is larger in an earlier period. Intuitively, for the cases that fall in the middle, it is less

clear to the DM whether she should permit it or ban it and the expected cost of making

a mistake is higher. Hence, the value of investigation for these cases is higher. Thus if

case x triggers an investigation in period t and case x′ > x triggers an investigation in

period t, then any case in [x, x′] triggers an investigation in period t. Moreover, since

the DM can use the information she acquires in an earlier period for later periods, the

value of investigation is higher in an earlier period, resulting in more investigation in

an earlier period.

Lemma 2. In the three-period model under nonbinding precedent, the set of cases that

trigger an investigation in period t, denoted by XN
t , is an interval (possibly empty).

Moreover, XN
3 ⊆ XN

2 ⊆ XN
1 .

3.2 Binding precedent

We first show that in each period t, the cases that trigger an investigation form a

(possibly degenerate) interval under binding precedent as well. Moreover, if the DM’s

hands are tied regarding case xt, that is, if xt ≤ Lt or if xt ≥ Rt, then xt does not

trigger an investigation.

Lemma 3. Under binding precedent, for any precedent (Lt, Rt), the set of cases that

trigger an investigation in period t, denoted by XB
t (Lt, Rt), is an interval (possibly

empty). Moreover, XB
t (Lt, Rt) ⊆ (Lt, Rt).

This characterization of the investigation decision of an uninformed DM under

binding precedent holds not just for the three-period model but for any time horizon.
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In the next proposition, we compare the investigation decisions under binding prece-

dent and nonbinding precedent.

Proposition 1. In the three-period model, the uninformed DM investigates more un-

der binding precedent than under nonbinding precedent in period 1, and investigates less

under binding precedent than under nonbinding precedent in periods 2 and 3. Specifi-

cally,

(i) XN
1 ⊆ XB

1 (L1, R1).

(ii) If [θ, θ̄] ⊆ [L2, R2], then XN
2 = XB

2 (L2, R2); otherwise XN
2 ⊆ XB

2 (L2, R2).

(iii) XB
3 (L3, R3) = (L3, R3) ∩XN

3 .

To understand this result, first consider the last period. The reason for the DM

to investigate less in period 3 under binding precedent is that an investigation has

no value if x3 ≤ L3 or if x3 ≥ R3 since the DM must permit any x3 ≤ L3 and

must ban any x3 ≥ R3 no matter what the investigation outcome is; moreover, since

period 3 is the last period, the information about θ has no value for the future either.

For x3 ∈ (L3, R3), the DM faces the same incentives under binding and nonbinding

precedent and therefore the same set of cases trigger an investigation.

If the precedent in period 2 satisfies [θ, θ̄] ⊆ [L2, R2], then investigation avoids

mistakes in ruling in the current period as well as the future period even under binding

precedent. In this case, the DM faces the same incentives under binding and nonbinding

precedent and therefore i the same set of cases trigger an investigation. However, if

the precedent in period 2 does not satisfy [θ, θ̄] ⊆ [L2, R2], then even if x2 ∈ (L2, R2)

and the DM investigates, mistakes in ruling can still happen in period 3 under binding

precedent if θ /∈ [L2, R2] since the DM is bound to follow the precedent. In this case,

the value of investigation is lower under binding precedent than under nonbinding

precedent and therefore the DM investigates less under binding precedent.

Since the precedent in period 1 satisfies [θ, θ̄] ⊆ [L1, R1], investigation avoids mis-

takes in ruling in the current period as well as in future periods even under binding

precedent. However, for x1 ∈ (θ, θ̄), if the DM makes a ruling without an investigation

when x1 is realized, then she changes the precedent in a way such that [θ, θ̄] 6⊆ [L2, R2].

As discussed in the previous paragraph, the binding precedent arising from this rul-

ing potentially results in mistakes in the future and diminishes the DM’s incentive to

investigate future periods, which in turn lowers the DM’s dynamic payoff. Hence, the
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DM’s payoff from not investigating in period 1 is lower under binding precedent which

gives her a stronger incentive to investigate early on.

4 Infinite-horizon model

We now consider the infinite-horizon model. We start by defining optimal policies

under the two institutions.

Nonbinding precedent

With nonbinding precedent, the payoff-relevant state in any period is the realized

case x ∈ [0, 1] and the information about θ.

If θ is known at the time when the relevant decisions are made, then it is optimal

not to investigate; to permit x if x ≤ θ; and the DM’s payoff is 0.

If θ is unknown at the time when the relevant decisions are made, a policy for the

DM is a pair of functions σN = (µN , ρN), where µN : [0, 1]→ {0, 1} is an investigation

policy and ρN : [0, 1] → {0, 1} is an uninformed ruling policy, with µN(x) = 1 if and

only if an investigation is made when the case is x and ρN(x) = 1 if and only if case x

is permitted.

For each policy σN = (µN , ρN), let VN(·;σN) be the associated value function, that

is, VN(x;σN) represents the dynamic payoff of the DM when she is uninformed, faces

case x in the current period, and follows the policy σN . In what follows, we suppress

the dependence of the dynamic payoffs on σN for notational convenience. Given any

dynamic payoff VN , let EV ∗N denote its expected value, that is, EV ∗N =
∫ 1

0
VN(x′)dG(x′).

The policy σ∗N = (µ∗N , ρ
∗
N) is optimal if σ∗N and the associated value function V ∗N

satisfy the following conditions:

(N1) The uninformed ruling policy satisfies ρ∗N(x) = 1 if and only if for any case x

∫ max{x,θ}

θ

−`(x, θ)dF (θ) ≥
∫ θ̄

min{x,θ̄}
−`(x, θ)dF (θ).

(N2) Given V ∗N and the uninformed ruling policy ρ∗N , the investigation policy for the

uninformed DM satisfies µ∗N(x) = 1 if and only if for any case x

−z ≥ ρ∗N(x)

∫ max{x,θ}

θ

−`(x, θ)dF (θ) + (1− ρ∗N(x))

∫ θ̄

min{x,θ̄}
−`(x, θ)dF (θ) + δEV ∗N .
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(N3) Given σ∗N , for any case x, the dynamic payoff satisfies

V ∗N(x) = −zµ∗N(x) + (1− µ∗N(x))

[
ρ∗N(x)

∫ max{x,θ}

θ

−`(x, θ)dF (θ)

+ (1− ρ∗N(x))

∫ θ̄

min{x,θ̄}
−`(x, θ)dF (θ) + δEV ∗N

]
.

Condition (N1) says that the DM chooses the ruling that minimizes the expected

cost of making a mistake in the current period. The ruling decision depends only on

the current period payoff because the ruling does not affect the DM’s continuation

payoff under nonbinding precedent. Condition (N2) says that when uninformed, a case

triggers an investigation if and only if the DM’s dynamic payoff from investigating is

higher than her expected dynamic payoff from not investigating. If a case triggers an

investigation, then θ becomes known and no mistake in ruling will be made in the

current period as well as in the future. In this case, the dynamic payoff of the DM is

negative of the cost of investigation. If a case does not trigger an investigation, then

the DM’s dynamic payoff is the sum of the expected cost of making a mistake in the

current period and the continuation payoff. This payoff is the value function given in

condition (N3).

Binding precedent

With binding precedent, the payoff-relevant state in any period is the precedent

pair (L,R), the realized case x, and the information about θ.13

If θ is known at the time when the relevant decisions are made, then it is optimal

not to investigate. Moreover, the optimal ruling policy is as follows. If θ ∈ (L,R), then

it is optimal to permit x iff x ≤ θ. If θ ≤ L, then it is optimal to permit x iff x ≤ L.

If θ ≥ R, then it is optimal to permit x iff x < R.

Let C(L,R) denote the expected dynamic payoff of the DM when the precedent

is (L,R), conditional on θ being known when decisions regarding the cases are made

where the expectation is taken over θ before it is revealed and over all future cases x.

Note that C(L,R) has two components, one is when future cases fall below L and the

other is when future cases fall above R. We denote the first component by c(L) and

13For expositional simplicity, we consider precedents with L < R in our analysis of binding prece-
dent. Under binding precedent, this must happen on the equilibrium path and the analysis is without
loss of generality.
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the second by c(R). Formally,

c(L) =

0 if L ≤ θ,

1
1−δ

∫ L
θ

∫ L
θ
−`(x, θ)dG(x)dF (θ) if L > θ,

c(R) =

0 if R ≤ θ̄,

1
1−δ

∫ θ̄
R

∫ θ
R
−`(x, θ)dG(x)dF (θ) if R < θ̄,

and

C(L,R) = c(L) + c(R).

To see how we derive c(L) and c(R), note that if θ < L and x ∈ (θ, L], then the DM

incurs a cost of −`(x, θ) since she has to permit x, but if θ ≥ L, then the DM incurs no

cost if the case falls below L; similarly, if θ > R and x ∈ [R, θ), then the DM incurs a

cost of −`(x, θ) since she has to ban x, but if θ ≤ R, then the DM incurs no cost if the

case falls above R. Note that c(L) is decreasing in L and c(R) is increasing in R, and

therefore C(L,R) is decreasing in L and increasing in R. Intuitively, C(L,R) captures

the expected cost in ruling mistakes due to the binding power of the precedent L and

R, and therefore, it is higher when the precedent is tighter.

If θ is unknown at the time when the decisions regarding the cases are made, a

policy for the DM is a pair of functions σB = (µB, ρB), where µB : S → {0, 1} is

an investigation policy and ρB : S → {0, 1} is an uninformed ruling policy, where

µB(s) = 1 if and only if an investigation is made when the state is s, and ρB(s) = 1 if

and only if case x is permitted when the state is s.

Let A(s) denote the DM’s dynamic payoff if she investigates in state s = ((L,R), x),

not including the investigation cost. Formally, let L be the (possibly degenerate)

interval [θ,max{L, θ}] and R be the (possibly degenerate) interval [min{R, θ̄}, θ̄], we

have

A(s) = 1L(x)

∫ x

θ

−`(x, θ)dF (θ) + 1R(x)

∫ θ̄

x

−`(x, θ)dF (θ) + δC(L,R).

For each policy σB = (µB, ρB), let VB(·;σB) denote the associated value function,

that is, VB(s;σB) represents the dynamic payoff of the DM when the state is s, θ is

unknown, and she follows the policy σB. In what follows, we suppress the dependence
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VB on σB for notational convenience. For notational convenience, let EVB(L,R) =∫ 1

0
VB(L,R, x′)dG(x′).

Recall that the transition of precedent is captured by the function π, defined in (1).

The policy σ∗B = (µ∗B, ρ
∗
B) is optimal if σ∗B and the associated value function V ∗B satisfy

the following conditions:

(B1) Given V ∗B, for any state s, the uninformed ruling policy satisfies ρ∗B(s) = 1 if

either x ≤ L or x ∈ (L,R) and

∫ max{x,θ}

θ

−`(x, θ)dF (θ) + δEV ∗B(π(s, 1)) ≥
∫ θ̄

min{x,θ̄}
−`(x, θ)dF (θ) + δEV ∗B(π(s, 0));

and ρ∗B(s) = 0 if either x ≥ R or x ∈ (L,R) and

∫ max{x,θ}

θ

−`(x, θ)dF (θ) + δEV ∗B(π(s, 1)) <

∫ θ̄

min{x,θ̄}
−`(x, θ)dF (θ) + δEV ∗B(π(s, 0)).

(B2) Given V ∗B and the uninformed ruling policy ρ∗B, for any state s, the investigation

policy for the uninformed DM satisfies µ∗B(s) = 1 if and only if

−z + A(s) ≥ ρ∗B(s)

∫ max{x,θ}

θ

−`(x, θ)dF (θ)

+(1− ρ∗B(s))

∫ θ̄

min{x,θ̄}
−`(x, θ)dF (θ) + δEV ∗(π(s, ρ∗(s))).

(B3) Given σ∗, for any state s, the dynamic payoff satisfies

V ∗B(s) = µ∗B(s) [−z + A(s)]

+ (1− µ∗B(s))

[
ρ∗B(s)

∫ max{x,θ}

θ

−`(x, θ)dF (θ)

+ (1− ρ∗B(s))

∫ θ̄

min{x,θ̄}
−`(x, θ)dF (θ) + δEV ∗B(π(s, ρ∗(s)))

]
.

Under binding precedent, the ruling decision may change the precedent, which

in turn may affect the continuation payoff. As such, condition (B1) says the ruling

decision depends on both the current period payoff and the continuation payoff. In

particular, the DM chooses the ruling that maximizes the sum of the current period
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payoff and the continuation payoff, taking into consideration how her ruling affects the

precedent in the next period. Condition (B2) says that the DM chooses to investigate

a case if and only if her dynamic payoff from investigating is higher than her expected

dynamic payoff from not investigating.

If the DM investigates case x, then θ becomes known. When the precedents are

binding, however, mistakes in ruling can still happen if θ < L or if θ > R. In this case,

the dynamic payoff V ∗B(s) is the expected cost of making mistakes in the ruling, both

in the current period and in future periods, minus the cost of investigation. If the DM

does not investigate case x, then her dynamic payoff is the sum of the expected cost of

making a mistake in the current period and the continuation payoff. Condition (B3)

formalizes this.

Existence and uniqueness

We next show that the DM’s value functions and optimal policies as defined in

(N1-P3) and (B1-B3) exist and are unique.

Proposition 2. Under either nonbinding precedent or binding precedent, the DM’s

optimal policy exists and is unique.

To prove this, we first apply the Contraction Mapping Theorem to show that the

value functions V ∗N and V ∗B exist and are unique. The optimality conditions (N1-N2)

and (B1-B2) then uniquely determine the optimal policies σ∗N and σ∗B. We next turn

to the characterization of the value function and optimal policy.

4.1 Nonbinding precedent

If the DM already investigated in a previous period, then she knows the value of θ

and would permit or ban a case according to θ. The following result is analogous to

Lemma 2 in the three-period model.

Lemma 4. Under nonbinding precedent, the set of cases that trigger an investigation

in any period is an interval.

Let XN = {x : µ∗N(x) = 1}, that is, XN is the set of cases that trigger an investi-

gation under nonbinding precedent. Recall x̂ is the case such that the uninformed DM

is indifferent between permitting and banning. Let

ẑ =

∫ x̂

θ

`(x, θ)dF (θ) (3)
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denote the expected cost from making uninformed ruling on x̂. If XN 6= ∅, let aN =

inf{x : µ∗N(x) = 1} and bN = sup{x : µ∗N(x) = 1}.
We next show that if the DM faces a case such that there is no uncertainty about

what the correct ruling is for that case (that is, if x ≤ θ or if x ≥ θ̄), then there is no

investigation. Intuitively, because of discounting, it is optimal to delay investigation

until it is useful immediately even though the information from investigation is valuable

for future rulings. In this case, the optimal ruling decision is to permit x if and only if

x ≤ x̂ as shown in Lemma 1.

Let λ denote the expected loss if the DM makes a ruling without an investigation,

that is,

λ =

∫ x̂

θ

∫ x

θ

−`(x, θ)dF (θ)dG(x) +

∫ θ

x̂

∫ θ̄

x

−`(x, θ)dF (θ)dG(x).

Let z∗ = ẑ − δλ
1−δ . We also show that the uninformed DM investigates with pos-

itive probability if the investigation cost is below the threshold z∗. In that case, the

uninformed DM permits any case below aN and bans any case above bN .

Proposition 3. Under nonbinding precedent, any case x /∈ (θ, θ̄) does not trigger an

investigation. If z > z∗, then XN = ∅, and the uninformed DM permits x if x ≤ x̂

and bans x otherwise. If z ≤ z∗, then XN = [aN , bN ] 6= ∅ and the uninformed DM

permits x if x < aN and bans x if x > bN .

Suppose XN 6= ∅. Recall that EV ∗N =
∫ 1

0
V ∗N(x′)dG(x′). Proposition 3 says that

the optimal policies are characterized by aN and bN . To find aN and bN , note that

V ∗N(x) =



δEV ∗N if x ≤ θ, or if x ≥ θ̄,∫ x
θ
−`(x, θ)dF (θ) + δEV ∗N if θ < x < aN ,

−z if x ∈ [aN , bN ],∫ θ̄
x
−`(x, θ)dF (θ) + δEV ∗N if bN < x < θ̄.

(4)

To see how we derive this, note that if x ≤ θ or if x ≥ θ̄, then the DM does not

investigate and makes no mistake in her ruling in the current period. In this case, her

current-period payoff is 0 and her continuation payoff is δEV ∗N . If θ < x < aN or if

bN < x < θ̄, the DM does not investigate in the current period and incurs some cost of

making a mistake in expectation. Since θ remains unknown, her continuation payoff is
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δEV ∗N . If x ∈ [aN , bN ], then the DM investigates. Since she makes no mistake in her

ruling both in the current period and in all future periods, her current period payoff is

−z and her continuation payoff is 0.

From (4), we have

EV ∗N = −z[G(bN)−G(aN)] + δEV ∗N [G(aN) + 1−G(bN)]

+

∫ aN

θ

∫ x

θ

−`(x, θ)dF (θ)dG(x) +

∫ θ̄

bN

∫ θ̄

x

−`(x, θ)dF (θ)dG(x).

For any a, b such that θ < a ≤ b < θ̄, let h(a, b) =
∫ a
θ

∫ x
θ
−`(x, θ)dF (θ)dG(x) +∫ θ̄

b

∫ θ̄
x
−`(x, θ)dF (θ)dG(x). That is, h(a, b) is the expected cost of making a mistake

before the realization of the case when the DM’s investigation interval is [a, b]. Then

EV ∗N =
h(aN , bN)− z[G(bN)−G(aN)]

1− δ[G(aN) + 1−G(bN)]
. (5)

Since the DM is indifferent between investigating and not investigating when x = aN

or when x = bN , we have

− z =

∫ aN

θ

−`(aN , θ)dF (θ) + δEV ∗N =

∫ θ̄

bN

−`(bN , θ)dF (θ) + δEV ∗N . (6)

We can solve for EV ∗N , aN , bN from equations (5) and (6) which gives us the

characterization of the optimal policies. Plugging these in (4), we can solve for the

value function V ∗N(x).

4.2 Binding precedent

We now consider binding precedent. We first establish that the value function V ∗B
is decreasing in L and increasing in R; and the optimal investigation policy µ∗ is also

decreasing in L and increasing in R. This result says that as the precedent gets tighter,

the DM investigates less and her payoff also becomes lower.

In what follows, let Se denote the set of possible precedents that can arise on the

equilibrium path under binding precedent, that is, Se = {(L,R) ∈ [0, 1]2 : L < R}.

Proposition 4. Suppose the precedent (L̂, R̂) is tighter than (L,R), that is, L ≤ L̂ <

R̂ ≤ R. Under binding precedent, for any case x ∈ [0, 1], if it triggers an investigation

under precedent (L̂, R̂), then it also triggers investigation under precedent (L,R), that
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is, µ∗B(L,R, x) is decreasing in L and increasing in R. Moreover, the value function

V ∗B(L,R, x) is decreasing in L and increasing in R, and EV ∗B(L,R) is continuous in L

and R for any (L,R) ∈ Se.

We next show that as in the three-period model, the set of cases that the DM

investigates is an interval, and moreover, if the DM’s hands are tied regarding a case,

then that case does not trigger an investigation.

Proposition 5. Under binding precedent, for any precedent (L,R) ∈ Se (i) the set of

cases that trigger an investigation is an interval; (ii) if x ≤ L or if x ≥ R, then x does

not trigger an investigation.

Let XB(L,R) = {x : µ∗B(L,R, x) = 1} denote the investigation interval under

(L,R). For any (L,R) ∈ Se such that XB(L,R) 6= ∅, let a(L,R) = XB(L,R) and

b(L,R) = supXB(L,R).

We next show that, analogous to Proposition 1 in the three-period model, the DM

investigates more under binding precedent than under nonbinding precedent early on

but investigates less under binding precedent in later periods. We formalize the first

part of this statement by comparing the investigation intervals in the first period.

Formalizing the second part is trickier since the investigation interval under binding

precedent in later periods depend on the realized path of the cases. We show that

eventually there is less investigation under binding precedent by characterizing a limit

investigation interval under binding precedent.

Before we give a formal definition, we discuss the idea. Suppose that given the

the initial precedent, the set of cases that trigger an investigation is nonempty (if

it is empty, then no investigation will be carried out in any period). For notational

simplicity, let a1 = a(L1, R1) and b1 = b(L1, R1). Recall that the the initial precedent

is consistent with the DM’s preference, that is, L1 < θ and R1 > θ̄. Hence, we have

L1 < a1 ≤ b1 < R1, and x1 triggers an investigation if and only if x1 ∈ [a1, b1].14

If x1 ∈ [a1, b1], then it triggers an investigation immediately. If x1 /∈ [a1, b1], then the

DM makes a ruling without any investigation and changes the precedent to (L2, R2) =

(x1, R1) if she permits the case and to (L2, R2) = (L1, x1) if she bans the case. Note

that the resulting new precedent satisfies L2 < a1 and b1 < R2. Monotonicity of

µ∗B in L and R as established in Proposition 4 implies that the investigation interval

14In Lemma A.2, we show that if L < a(L,R) ≤ b(L,R) < R, then the investigation interval under
precedent (L,R) is closed.
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in period 2, if nonempty, satisfies a(L2, R2) ≥ a1 and b(L2, R2) ≤ b1. Therefore we

have L2 < a(L2, R2) ≤ b(L2, R2) < R2 and the DM investigates x2 if and only if

x ∈ [a(L2, R2), b(L2, R2)]. An iteration of this argument shows that on any realized

equilibrium path, given the precedent (L,R), the investigation interval (if nonempty)

satisfies L < a(L,R) ≤ b(L,R) < R. The investigation intervals either converge to

∅ or to some nonempty set [â, b̂] such that if the precedent is (L,R) = (â, b̂), then

a(L,R) = â and b(L,R) = b̂.

We now define a limit investigation interval under binding precedent, denoted by

X∞B . If there is no investigation under the initial precedent, that is, if XB(L1, R1) = ∅,

then there is no investigation in any other period by Proposition 4. In this case,

X∞B = ∅. If the investigation interval XB(L1, R1) under the initial precedent is

nonempty, then construct a sequence {an, bn, Ln, Rn} as follows. Given Ln and Rn, if

XB(Ln, Rn) 6= ∅, then let an = a(Ln, Rn), bn = b(Ln, Rn) and pick Ln+1 and Rn+1 such

that Ln < Ln+1 < a(Ln, Rn) and b(Ln, Rn) < Rn+1 < Rn. If XB(Ln, Rn) = ∅, then let

an = bn = Ln+Rn

2
, an+1 = an, bn+1 = bn, Ln+1 = Ln, Rn+1 = Rn and X∞B = ∅. Note

that an is increasing and bn is decreasing. Since a monotone and bounded sequence

converges, lim an and lim bn are well defined. If XB(Ln, Rn) 6= ∅ for all n, then let

X∞B = (lim an, lim bn). Note that a limit investigation interval under binding precedent

may depend on the particular sequence {Ln, Rn} we pick.

Recall that XN is the set of cases that trigger an investigation under nonbinding

precedent.

Proposition 6. The DM investigates more under binding precedent than under non-

binding precedent early on but investigates less under binding precedent in later periods.

Specifically, for any limit investigation interval X∞B under binding precedent, we have

X∞B ⊆ XN ⊆ XB(L1, R1).

5 Social welfare

Since binding precedent places constraints on what the DM can do in terms of her

rulings, her payoff is clearly higher under nonbinding precedent than under binding

precedent.15 However, since the decisions may affect the society at large, as in the case

15If the DM is given the choice between the two institutions, then she would prefer the nonbinding
precedent. A third alternative is for the DM to be given the right to decide on a case-by-case basis
whether to make her ruling binding. Since the DM would not make the ruling on any case binding
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of court rulings, the DM’s payoff is not a good measure of social welfare in the presence

of this externality. If the rest of the society does not bear the cost of information

acquisition but cares about the rulings, then a reasonable measure of social welfare

may be simply the payoffs coming from the ruling decisions. Formally, we define a

social welfare function V S
N (x) under nonbinding precedent and a social welfare function

V S
B (x, L,R) under binding precedent as follows.

Under nonbinding precedent, the optimal policy that the DM chooses is given by

(µ∗N , ρ
∗
p). If µ∗N(x) = 1, then the current ruling as well as all future rulings are cor-

rect, and therefore V S
N (x) = 0. If µ∗N(x) = 0, then the social welfare consists of the

expected social cost from the potential mistake in ruling today as well the discounted

continuation payoff EV S
p . In this case,

V S
N (x) = ρ∗(x)

∫ max{x,θ}

θ

−`(x, θ)dF (θ) + (1− ρ∗(x))

∫ θ̄

min{x,θ̄}
−`(x, θ)dF (θ) + δEV S

N .

Similarly, under binding precedent, if µ∗B(x) = 1, then V S
B (s) = A(s), and if µ∗B(x) =

0, then

V S
B (s) = ρ∗(s)

∫ max{x,θ}

θ

−`(x, θ)dF (θ)

+ (1− ρ∗(s))
∫ θ̄

min{x,θ̄}
−`(x, θ)dF (θ) + δEV S

B (π(s, ρ∗(s))).

Let the expected social welfare under nonbinding precedent beEV S
N =

∫ 1

0
V S
N (x′)dG(x′)

and the expected social welfare under binding precedent beEV S
B =

∫ 1

0
V S
B (L1, R1, x

′)dG(x′).

We next compare the social welfare under the two institutions.

5.1 Welfare comparison

We first discuss the special cases of δ = 0 and δ = 1 since welfare comparison is

straightforward in these cases.

Consider first δ = 0. Since the DM cares about only the current decision, the

equilibrium investigation interval is the same whether precedent is binding or nonbind-

without learning θ first, the equilibrium outcome is the same as that under the institution of non-
binding precedent.
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ing. Even though the equilibrium investigation decisions are the same under the two

institutions, the rulings may be different after the DM learns θ. Under nonbinding

precedent, she makes the correct ruling regarding x in all future periods, but does not

necessarily do so under binding precedent if θ /∈ (L,R). Hence, social welfare is higher

under nonbinding precedent when δ = 0.

One interpretation of δ = 0 is that it represents a situation in which a new DM

is appointed in each period and each DM cares about only her own decision. If the

discount factor that enters the social welfare function is not 0, then social welfare is

higher under nonbinding precedent. Intuitively, with short-sighted DMs, making the

precedent binding does not provide stronger incentive for information acquisition and

only results in distortions in rulings.

Next consider δ = 1. In this case, the DM investigates all x ∈ [θ, θ] in the first period

and the equilibrium policies are the same under binding and nonbinding precedent.16

It follows that the social welfare coincides under the two institutions.

In these special cases, the stronger incentive for the DM to acquire information

early on is absent, and nonbinding precedent yields (weakly) higher social welfare than

binding precedent. But the opposite comparision is possible too, as illustrated in the

following example.

Example 1. Suppose that θ is uniformly distributed on [0.2, 0.8], x is uniformly dis-

tributed on [0, 1], δ = 0.95, z = 0.1 and `(x, θ) = |x− θ|.
In this example, more cases trigger investigation in the first period under binding

precedent than under nonbinding precedent, but as the precedents are established over

time, the set of cases that trigger an investigation eventually becomes empty under

binding precedent.

To provide a sharper characterization of which institution is more conducive to

higher social welfare, we next consider a simple and tractable discrete framework.

5.2 Discrete framework

In this subsection, suppose xt is uniformly distributed on {xL, xH} and θ is uni-

formly distributed on {θL, θM , θH} with θL < xL < θM < xH < θH . Assume that under

16To see this, first note that it is straightforward to show that the investigation interval under
nonbinding precedent is [θ, θ] as δ goes to 1. Also note that the investigation interval under binding
precedent contains the investigation interval under nonbinding precedent in the first period for any
δ by Proposition 6. Since no case outside [θ, θ] is ever investigated, it follows that the investigation
interval under binding precedent in the first period is also [θ, θ].
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Figure 2: Comparison of the DM’s dynamic payoffs
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Figure 3: Comparison of social welfare

the prior, it is optimal to permit xL and ban xH . Let cL = `(xL, θL) and cH = `(xH , θH)

and assume, without loss of generality, that cL ≤ cH . As before, the initial precedent

L1 and R1 are consistent with the DM’s preferences, that is, L1 ≤ θL and R1 ≥ θH .

The following lemma is an analog of Proposition 3, which characterizes the optimal

policies under nonbinding precedent for the continuous framework. It also says that

more cases trigger an investigation when the cost of investigation is lower.
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Lemma 5. There exists zN and z̄N such that under nonbinding precedent, if z ≤ zN ,

both xL and xH trigger investigation; if zN < z ≤ z̄N , only xH triggers investigation;

if z > z̄N , there is no investigation.

A similar result holds for the binding precedent, in the sense that, in the first period,

when the cost of investigation is low enough, both cases trigger investigation; when the

cost of investigation is sufficiently high, there is no investigation; and in between, only

xH triggers investigation. The next result formalizes this observation, and establishes

a comparison of the cost cutoffs relative to nonbinding precedent.

Lemma 6. There exists zB and z̄B such that in the first period under binding precedent,

if z ≤ zB, both xL and xH trigger investigation; if zB < z ≤ z̄B, only xH triggers

investigation; if z > z̄B, there is no investigation. Furthermore, z̄N = z̄B and zN < zB.

Note that when z ≤ zN , both cases trigger investigation immediately under either

institution, and when z > z̄B = z̄N , there is no investigation under either institution.

In these cases, the social welfare is the same under both institutions. By contrast, social

welfare is different under the two institutions when z ∈ (zN , zB], or when z ∈ (zB, z̄N ].

When z ∈ (zN , zB], both cases trigger investigation immediately under binding

precedent but only xH triggers investigation under nonbinding precedent. As a result,

the social welfare under binding precedent is higher than the social welfare under

nonbinding precedent due to more information acquisition.

When z ∈ (zB, z̄N ], only xH triggers investigation in the first period under both

institutions. Consequently, if xH is drawn in the first period, then the payoff is the

same under both institutions. If xL is drawn in the first period, however, the DM

permits it without investigation, and the precedent becomes L2 = xL, R2 = R1. Under

nonbinding precedent, she continues to permit xL without investigation until xH is

drawn. At that point, she investigates and decides all cases correctly from then on.

By contrast, under binding precedent, when xH is drawn, depending on the parameter

values, it may or it may not trigger investigation. If it does not trigger investigation,

social welfare is lower under binding precedent due to less information acquisition. If it

triggers investigation, social welfare is still lower under binding precedent because the

DM cannot make full use of the information: if the investigation reveals that θ = θL,

it is socially optimal to ban xL but the DM has to follow the precedent and permit xL.

The following proposition summarizes these observations.
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Proposition 7. If the cost of information acquisition is sufficiently low or sufficiently

high, then welfare is the same under two institutions; otherwise, it is different. For-

mally, (i) If z ≤ zN or z > z̄N = z̄B, then welfare is the same under nonbinding

precedent and binding precedent. (ii) If zN < z ≤ zB, then welfare is higher under

binding precedent. (iii) If zB < z ≤ z̄N = z̄B, then welfare is higher under nonbinding

precedent.

6 Conclusion

We have analyzed a simple model designed to capture an important consequence

of the authority of the precedent, a common institution which can make violating

previously established rulings costly. The main insight obtained is that this cost can

serve to motivate decision makers to acquire information more intensively early on and

therefore can be socially beneficial. There are many ways to enrich and extend the

model; as concluding remarks, we discuss some promising directions.

Partial learning. The information structure we assumed so far is stark: an investi-

gation reveals θ perfectly. We relax this assumption by considering partial learning.

As in Baker and Mezzetti [2012], we now assume that an investigation reveals only

whether it is optimal to permit or ban the case at hand, which is informative about

the value of θ, but may not perfectly reveal it. With partial learning, the informational

state is much richer than before,17 thereby complicating the analysis significantly. For

tractability, we continue to use the discrete framework introduced in the preceding

section. In this setting, if the DM investigates when the current case is xL and finds

that it should be banned, she infers that θ = θL, but if she finds that it should be

permitted, she infers that θ ∈ {θM , θH}. Similarly, if the DM investigates when the

current case is xH and finds that it should be permitted, she infers that θ = θH , but

if she finds that it should be permitted, she infers that θ ∈ {θL, θM}. In Appendix B,

we show that the analogs of Lemma 5, Lemma 6 and Proposition 7 hold in this partial

learning setting, demonstrating the robustness of our results.

Different decision makers in different periods. We have considered a single long-

lived DM and the only externality is the social implications of the rulings. If different

DMs make decisions in different periods, then the model becomes a stochastic game,

17Recall that under perfect learning, the DM either knows θ perfectly or her belief about θ is the
same as her prior.
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and new complications arise. The smallest departure from our model would be a setting

in which the DMs have the same preferences regarding the rulings (a common θ) and

the information learned about θ from one DM’s investigation is passed down to future

DMs (for example, through written opinions), but the information acquisition cost is

still private.18 Since information acquisition is costly, the DMs have incentives to free-

ride. But since this free-riding incentive is present under both nonbinding precedent

and binding precedent, our main point that the current DM has a stronger incentive

to acquire information under binding precedent than under nonbinding precedent in

earlier periods but a weaker incentive to do so in later periods still holds. Even though

this framework is a game rather than a single-agent decision problem, we can still

formulate it in a way that allows us to apply contraction mapping theorem to establish

existence of a unique equilibrium. Our numerical analysis shows that the main results

are robust in this extension.19

A more significant departure is a setting in which the DMs have different preferences

regarding outcomes, perhaps because of different ideological leanings. Then, under

binding precedent, a DM may distort her decision in the direction that she favors so

as to tie the hands of future DMs having different preferences than hers. This kind of

inefficiency does not arise if precedents have only nonbinding influence.

Precedents as organizational memory In their seminal 1963 book, Cyert and

March point out that “organizations have memories in the form of precedents, and

individuals in the coalition are strongly motivated to accept the precedents as binding.”

And as observed by Levitt and March [1988], the details of the future path of an

organization “depend significantly on the processes by which the memory is maintained

and consulted.” As such, how precedents shape the direction of an organization depends

on the processes through which they are conserved and retrieved. This raises a number

of interesting questions. For example, how does the technology of conservation and

retrieval of precedents affect the performance of the organization? Is it optimal to

have atrophy of organizational memory? Specifically, should more recent precedents

have more authority?

Evolving preferences. We have assumed that θ is fixed over time, reflecting stable

18In section 5.1, we discussed the case of δ = 0, which can be interpreted as modeling short-lived
DMs who care only about their own decisions. Here we consider short-lived DMs who also care about
future decisions made by other DMs.

19We omit the details here, but the uniqueness result and the numerical analysis are available upon
request.
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preferences. However, for certain matters, views on gay marriage for instance, social

preferences may change over time. The rigidity of binding precedent may delay an

organization’s response to such changes in preferences. Our model does not capture

the kind of inefficiency that arises in this case under binding precedent.

Varying degree of bindingness. We have compared two opposite cases: either

it is costless to violate a precedent (the nonbinding case) or it is infinitely costly to

do so (the binding case). In practice, it may be possible to violate precedent by

incurring some cost. This cost may not be so large as to completely deter a DM

from going against a previous ruling when new information makes it clear that doing

so is socially beneficial.20 These intermediate cases can be analyzed by extending our

model to allow a richer cost structure associated with violating precedent, reflecting the

varying degrees of bindingness that exist in different institutions. This richer structure

permits the exploration of such institutional design questions as the optimal degree of

bindingness.

Dynamic delegation. Implicitly in our model, the DM is delegated to make decisions

regarding cases that arise over time. Our analysis of binding precedents shows that

imposing history-dependent constraints on the set of feasible actions for the DM can

improve social welfare. A broader question is what would be the optimal delegation

mechanism in settings like ours. This opens up a new line of research since the literature

on optimal delegation has mostly focused on static settings (see, for example, the

seminal paper by Holmstrom [1984] and the recent works by Alonso and Matouschek

[2008], Armstrong and Vickers [2010] and Amador and Bagwell [2013]). Recently, new

models have been developed to study delegation in dynamic settings (see, for example,

Li, Matouschek, and Powell [2017] and Lipnowski and Ramos [2017]). However, these

papers consider a conflict of interest between the principal and the agent in terms of the

difference in preferred actions but not in terms of costly information acquisition. How

to use the dynamic link across decisions to design the optimal delegation mechanism

to motivate information acquisition is an exciting question. We plan to explore this

and the other interesting questions discussed above in future research.

20The conflict between stare decisis and the cost of judicial error has been recognized and studied
by legal scholars. See, for example, Lash [2014].
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Appendix A: Proofs

Proof of Lemma 2: Consider period 3 first. If x3 < θ, then the DM permits x3

without an investigation; if x3 > θ̄, then the DM bans x3 without an investigation. For

x3 ∈ [θ, x̂), if the DM does not investigate, then she permits the case by Lemma 1 and

her expected payoff is
∫ x3
θ
−`(x3, θ)dF (θ), which is decreasing in x3. For x3 ∈ (x̂, θ̄],

if the DM does not investigate, then she bans the case by Lemma 1 and her expected

payoff is
∫ θ
x3
−`(x3, θ)dF (θ), which is increasing in x3.

Let z∗ =
∫ x̂
θ
`(x̂, θ)dF (θ) > 0. If z > z∗, then XN

3 = ∅. If z ≤ z∗, then XN
3 = [x3, x̄3]

where x3 < x̂ and x̄3 > x̂ satisfy
∫ x3
θ
`(x3, θ)dF (θ) =

∫ θ̄
x̄3
`(x̄3, θ)dF (θ) = z.

Let EV N
t be the expected continuation payoff of the uninformed DM in period t.

We have

EV N
3 =

∫ x3

θ

∫ x

θ

−`(x, θ)dF (θ)dG(x) +

∫ θ

x̄3

∫ θ̄

x

−`(x, θ)dF (θ)dG(x)− [G(x̄3)−G(x3)]z > −z.

Now consider period 2. For any x2 ∈ [0, 1], the continuation payoff for the unin-

formed DM if she investigates is −z. For x2 /∈ [θ, θ], since the DM’s expected payoff

is δEV N
3 > −δz if she does not investigate and −z if she investigates, it is optimal for

her not to investigate.

Consider x2 ∈ [θ, x̂) and suppose the DM does not investigate. Since she permits

such a case, her expected payoff in period 2 is
∫ x2
θ
−`(x2, θ)dF (θ). Similarly, for x2 ∈

(x̂, θ], if the DM does not investigate, she bans x2 and her expected payoff in period 2

is
∫ θ̄
x2
−`(x2, θ)dF (θ).

Now consider the DM’s optimal investigation policy in period 2. For x2 ∈ [θ, x̂), it

is optimal for the DM to investigate in period 2 iff

−z ≥
∫ x2

θ

−`(x2, θ)dF (θ) + δEV N
3 .

Similarly, for x2 ∈ (x̂, θ], it is optimal for the DM to investigate in period 2 iff

−z ≥
∫ θ̄

x2

−`(x2, θ)dF (θ) + δEV N
3 .

Hence, if z > z∗− δEV N
3 , then XN

2 = ∅. If z < z∗− δEV N
3 , then XN

2 = [x2, x̄2] where
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x2 and x̄2 satisfy

−z =

∫ x2

θ

−`(x2, θ)dF (θ) + δEV N
3 =

∫ θ̄

x̄2

−`(x̄2, θ)dF (θ) + δEV N
3 .

Since EV N
3 < 0, we have x2 ∈ (θ, x3) and x̄2 ∈ (x̄3, θ̄), which implies that XN

3 ⊆ XN
2 .

It also follows that

EV N
2 =

∫ x2

θ

[∫ x

θ

−`(x, θ)dF (θ) + δEV N
3

]
dG(x) +

∫ θ

x̄2

[∫ θ̄

x

−`(x, θ)dF (θ) + δEV N
3

]
dG(x)

− [G(x̄2)−G(x2)]z.

Note that

EV N
3 = max

a,b∈[θ,θ̄],b>a

∫ a

θ

∫ x

θ

−`(x, θ)dF (θ)dG(x)+

∫ θ

b

∫ θ̄

x

−`(x, θ)dF (θ)dG(x)−[G(b)−G(a)]z,

and EV N
3 < 0. It follows that EV N

2 < EV N
3 < 0.

Now consider period 1. By a similar argument as in period 2, if z > z∗ − δEV N
2 ,

then XN
1 = ∅; if z < z∗ − δEV N

2 , then XN
1 = [x1, x̄1] where x1 and x̄1 satisfy

−z =

∫ x1

θ

−`(x1, θ)dF (θ) + δEV N
2 =

∫ θ̄

x̄1

−`(x̄1, θ)dF (θ) + δEV N
2 .

Since EV N
2 < EV N

3 , it follows that x1 ∈ (θ, x2) and x̄1 ∈ (x̄2, θ̄) and therefore

XN
2 ⊆ XN

1 .

Proof of Lemma 3: Consider period 3 first. Recall that under nonbinding precedent,

the investigation interval is XN
3 . Since under binding precedent, investigation has no

value if x3 ≤ L3 or if x3 ≥ R3, it follows that x3 triggers an investigation if and only if

x3 ∈ XN
3 ∩ (L3, R3). Hence, XB

3 (L3, R3) is an interval and XB
3 (L3, R3) ⊆ (L3, R3).

Let k(L,R) denote the DM’s expected payoff in period t under binding precedent

when the precedents are (L,R) conditional on θ being known where the expectation is

taken over θ before it is revealed and over all possible cases x. Formally

k(L,R) =

[∫
L

∫ L

θ

−`(x, θ)dG(x)dF (θ) +

∫
R

∫ θ

R

−`(x, θ)dG(x)dF (θ)

]
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where L is the (possibly degenerate) interval [θ,max{L, θ}] and R is the (possibly

degenerate) interval [min{R, θ̄}, θ̄]. That is, k(L,R) = (1 − δ)C(L,R) where C(L,R)

is defined on page 15. Note that k(L,R) is decreasing in L and increasing in R;

k(L,R) ≤ 0 and k(L,R) < 0 if L > θ or if R < θ̄.

To prove Lemma 3 for periods 1 and 2, we first establish Claim 1 below. Let

EV B
t (L,R) denote the uninformed DM’s expected equilibrium continuation payoff in

period t under binding precedent given that the precedent in period t is (L,R).

Claim 1. If EV B
t (L,R) is decreasing in L and increasing in R, then the set of cases

that trigger an investigation in period t − 1 is an interval for any precedent in period

t− 1.

Proof: Suppose that EV B
t (L,R) is decreasing in L and increasing in R. Fix precedent

in period t − 1 by (Lt−1, Rt−1). Suppose that x′ and x′′ > x′ are in XB
t−1(Lt−1, Rt−1).

We next show that any x̃ ∈ [x′, x′′] is also in XB
t−1(Lt−1, Rt−1).

Let gp(L,R, x) be the DM’s current-period payoff if she permits the case without

investigation in state s = (L,R, x) and gb(s) be her current-period payoff if she bans the

case without investigation in state s. Note that for any (L,R), gp(L,R, x) is decreasing

in x and gb(L,R, x) is increasing in x.

Suppose x̃ ∈ (Lt−1, Rt−1). If the DM investigates, then her continuation payoff

is −z + δk(Lt−1, Rt−1). Suppose, without loss of generality, that x̃ < x̂ so that it is

optimal for the uninformed DM to permit x̃. Since x′ ∈ XB
t−1(Lt−1, Rt−1), we have

−z + δk(Lt−1, Rt−1) ≥ gp(Lt−1, Rt−1, x
′) + δEV B

t (max{x′, Lt−1}, Rt−1). Since gp is de-

creasing in x, it follows that gp(Lt−1, Rt−1, x
′) > gp(Lt−1, Rt−1, x̃). Moreover, since

x̂ > max{x′, Lt−1} and EV B
t is decreasing in L, we have EV b

t (max{x′, Lt−1}, Rt−1) >

EV B
t (x̂, Rt−1). Hence, we have−z+δk(Lt−1, Rt−1) ≥ gp(Lt−1, Rt−1, x̂)+δEV B

t (x̂, Rt−1),

which implies that it is optimal for the DM to investigate when the case is x̃.

Suppose x̃ ≤ Lt−1. Then the DM has to permit x̃ regardless of whether she

investigates or not. Hence, x̃ triggers an investigation iff −z + δk(Lt−1, Rt−1) ≥
δEV B

t (Lt−1, Rt−1). Since x′ ∈ XB
t−1(Lt−1, Rt−1) and x′ < x̃, we have−z+δk(Lt−1, Rt−1) ≥

δEV B
t (Lt−1, Rt−1), implying that x̃ ∈ XB

t−1(Lt−1, Rt−1). A similar argument shows that

x̃ ∈ XB
t−1(Lt−1, Rt−1) if x̃ ≥ Rt−1 as well. Hence, XB

t−1(Lt−1, Rt−1) is an interval for any

(Lt−1, Rt−1).

We next show that EV B
3 (L,R) is decreasing in L and increasing in R. Consider

precedents (L3, R3) and (L̂3, R̂3) such that L̂3 ≤ L3 and R̂3 ≥ R3. As shown before,
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under the precedent (L3, R3), it is optimal for the DM to investigate iff x3 ∈ (L3, R3)∩
XN

3 . By following the same policy under precedent (L̂3, R̂3), the DM receives the

same payoff as under precedent (L3, R3). Hence, EV B
3 (L3, R3) ≤ EV B

3 (L̂3, R̂3), and

it follows from Claim 1 that XB
2 (L2, R2) is an interval. Consider x2 /∈ (L2, R2). It

triggers an investigation iff −z + δk(L2, R2) ≥ δEV B
3 (L2, R2). Since EV B

3 (L2, R2) ≥
−z+ k(L2, R2), it follows that δEV B

3 (L2, R2) > −z+ δk(L2, R2) and therefore x2 does

not trigger an investigation. Hence, XB
2 (L2, R2) ⊆ (L2, R2).

We next show that EV B
2 (L,R) is decreasing in L and increasing in R. Consider

precedents (L2, R2) and (L̂2, R̂2) such that L̂2 ≤ L2 and R̂2 ≥ R2. We show that

if the DM follows the same policy under precedent (L̂2, R̂2) as the optimal policy

under (L2, R2), then her continuation payoff is higher under precedent (L̂2, R̂2) than

under (L2, R2). Consider first x2 ∈ XB
2 (L2, R2). Then x2 ∈ (L2, R2), and in this

case, the DM’s continuation payoff is −z under either (L2, R2) or (L̂2, R̂2). Next

consider x2 /∈ XB
2 (L2, R2). Without loss of generality, suppose x2 ≤ x̂, which implies

that the uniformed DM permits x2. In this case, the precedent in period 3 becomes

(max{x2, L2}, R2). If the DM follows the same policy under precedent (L̂2, R̂2), then

the precedent in period 3 becomes (max{x2, L̂2}, R̂2). Since EV B
3 (L,R) is decreasing

in L and increasing in R, we have EV B
3 (max{x2, L2}, R2) ≤ EV B

3 (max{x2, L̂2}, R̂2).

Since the DM’s payoff in period 2 is the same under either (L2, R2) or (L̂2, R̂2), it follows

that her continuation payoff in period 2 is higher under precedent (L̂2, R̂2) than under

(L2, R2). A similar argument shows that the result holds for x2 > x̂. Hence, EV B
2 (L,R)

is decreasing in L and increasing in R. Claim 1 then implies that XB
1 (L1, R1) is an

interval. Since L1 = 0, R1 = 1 by assumption, we have XB
1 (L1, R1) ⊆ (L1, R1).

Proof of Proposition 1: Consider period 3 first. As shown in the proof of Lemma

3, under binding precedent, x3 triggers an investigation iff x3 ∈ XN
3 ∩ (L3, R3).

Now consider period 2. First suppose [θ, θ̄] ⊆ [L2, R2]. Then the incentive of the

DM in period 2 is the same under binding precedent as under nonbinding precedent.

In this case, XB
2 (L2, R2) = XN

2 . Next suppose [θ, θ̄] 6⊆ [L2, R2]. Recall that if XN
t 6= ∅,

then XN
t = [xt, x̄t]. We show below that under binding precedent, x2 does not trigger

an investigation.

Recall that the DM is indifferent between investigating and not investigating when

x2 = x2 in period 2 under nonbinding precedent. That is, we have

− z =

∫ x2

θ

−`(x2, θ)dF (θ) + δk(x3, x̄3)− δz[G(x̄3)−G(x3)]. (A1)
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Consider binding precedent. If x2 /∈ (L2, R2), then x2 does not trigger an investi-

gation, as shown in Lemma 3. Next consider x2 ∈ (L2, R2). Without loss of generality,

suppose that x2 ≤ x̂, which implies that the uninformed DM would permit x2, resulting

in L3 = x2 and R3 = R2. Since XB
3 (L3, R3) = (L3, R3) ∩ [x3, x̄3], the difference in the

DM’s continuation payoff between investigating and not investigating when the case is

x2 is

− z + δk(L2, R2)

−
[∫ x2

θ

−`(x2, θ)dF (θ) + δk(max{x2, x3},min{R2, x̄3})− δz[G(min{R2, x̄3})−G(max{x2, x3})]
]
.

Since max{x2, x3} = x3, this is equal to

−z −
∫ x2

θ

−`(x2, θ)dF (θ) + δ[k(L2, R2)− k(x3,min{R2, x̄3})] + δz[G(min{R2, x̄3})−G(x3)].

Substituting for −z from (A1), the difference in the DM’s continuation payoff between

investigating and not investigating when x2 = x2 is

δ[k(x3, x̄3) + k(L2, R2)− k(x3,min{R2, x̄3})]− δz[G(x̄3)−G(min{R2, x̄3})]

If x̄3 ≤ R2, then k(x3, x̄3) + k(L2, R2) − k(x3,min{R2, x̄3}) = k(L2, R2) < 0; if

x̄3 > R2, then k(x3, x̄3) + k(L2, R2) − k(x3,min{R2, x̄3}) = k(L2, x̄3) < 0. Note also

that G(x̄3)−G(min{R2, x̄3}) ≥ 0. Hence, the DM’s payoff is higher by not investigating

when x2 = x2 and therefore x2 does not trigger an investigation under binding precedent

(L2, R2).

A similar argument establishes that under binding precedent, x̄2 does not trigger

an investigation in period 2. Since both XN
2 and XB

2 (L2, R2) are intervals, it follows

that XB
2 (L2, R2) ⊆ XN

2 .

Now consider period 1. Recall that if XN
1 6= ∅, then XN

1 = [x1, x̄1]. We show

below that x1 triggers an investigation under binding precedent. Recall that the DM is

indifferent between investigating and not investigating when x1 = x1 under nonbinding
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precedent. That is,

−z =

∫ x1

θ

−`(x1, θ)dF (θ) + δEV N
2

=

∫ x1

θ

−`(x1, θ)dF (θ) + δk(x2, x̄2) + δ2[1−G(x̄2) +G(x2)]k(x3, x̄3)

− δz[G(x̄2)−G(x2) + δ(G(x̄3)−G(x3))]

Under binding precedent, if the DM investigates in period 1, her continuation payoff

is −z; if the DM does not investigate, her continuation payoff is
∫ x1
θ
−`(x1, θ)dF (θ) +

δEV B
2 (x1, R1). Note that EV B

2 (x1, R1) < V N
2 since the DM can follow the same policy

under nonbinding precedent as the optimal policy under binding precedent and receive

a higher payoff. Hence, x1 triggers an investigation in period 1 under binding precedent.

A similar argument establishes that under binding precedent, x̄1 triggers an in-

vestigation in period 1. Since both XN
1 and XB

1 (L1, R1) are intervals, it follows that

XN
1 ⊆ XB

1 (L1, R1).

Proof of Proposition 2: Let F denote the set of bounded measurable functions

on S taking values in R. For f ∈ F , let ||f || = sup{|f(s)| : s ∈ S}. An operator

Q : F → F satisfies the contraction property for || · || if there is a β ∈ (0, 1) such that

for f 1, f 2 ∈ F , we have ||Q(f 1) − Q(f 2)|| ≤ β||f 1 − f 2||. For any operator Q that

satisfies the contraction property, there is a unique f ∈ V such that Q(f) = f .

We prove the proposition for binding precedent. A similar and less involved argu-

ment shows uniqueness under nonbinding precedent as well.

Let gp(s) be the DM’s current-period payoff if she permits the case without inves-

tigation in state s and gb(s) be her current period payoff if she bans the case without

investigation in state s. Formally,

gp(s) =


∫ max{x,θ}
θ

−`(x, θ)dF (θ) if x < R,

−∞ if x ≥ R,

gb(s) =


∫ θ̄

min{x,θ̄}−`(x, θ)dF (θ) if x > L,

−∞ if x ≤ L.

For any V ∈ F and (L,R) ∈ Se, let EV (L,R) =
∫ 1

0
V (L,R, x′)dG(x′).
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For V ∈ F and any s ∈ S, define

TV (s) = max{−z + A(s), gp(s) + δEV (max{x, L}, R), gb(s) + δEV (L,min{x,R})}.
(A2)

Note that V ∗B as defined in (B3) satisfies V ∗B = TV ∗B.

Suppose that V 1, V 2 ∈ F and consider any s ∈ Se×[0, 1]. Without loss of generality,

suppose that TV 1(s) ≥ TV 2(s). There are three cases to consider.

(i) Suppose that TV 1(s) = −z +A(s). Since TV 1(s) ≥ TV 2(s), we have TV 2(s) =

−z + A(s). It follows that TV 1(s)− TV 2(s) = 0.

(ii) Suppose that TV 1(s) = gp(s) + δEV 1(max{L, x}, R). We have

|TV 1(s)− TV 2(s)| ≤ gp(s) + δEV 1(max{L, x}, R)− gp(s)− δEV 2(max{L, x}, R)

≤ δ

∫ 1

0

[
V 1(max{L, x}, R, x′)− V 2(max{L, x}, R, x′)

]
dG(x′)

≤ δ

∫ 1

0

[
|V 1(max{L, x}, R, x′)− V 2(max{L, x}, R, x′)|

]
dG(x′)]

≤ δ||V 1 − V 2||.

(iii) Suppose that TV 1(s) = gb(s) + δEV 1(L,min{x,R}). Then a similar argument

as in case (ii) shows that |TV 1(s)− TV 2(s)| ≤ δ||V 1 − V 2||.
Since either |TV 1(s) − TV 2(s)| = 0 or |TV 1(s) − TV 2(s)| ≤ δ||V 1 − V 2|| for any

s ∈ S in all three cases, we have ||TV 1 − TV 2|| ≤ δ||V 1 − V 2|| and therefore T is a

contraction. Since T is a contraction, it has a unique fixed point. Since V ∗B as defined

in (B3) satisfies TV ∗B = V ∗B, there is a unique V ∗B. Once we solve for V ∗B, (B1) and (B2)

determine the optimal policies ρ∗B and µ∗B uniquely.

Proof of Lemma 4: Suppose x′ and x′′ trigger an investigation. Then, by (N1) and

(N2), we have

−z ≥ max

{∫ max{x,θ}

θ

−`(x, θ)dF (θ),

∫ θ̄

min{x,θ̄}
−`(x, θ)dF (θ)

}
+ δEV ∗N .

for x ∈ {x′, x′′}.
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Suppose x̃ ∈ [x′, x′′]. Since
∫ max{x,θ}
θ

−`(x, θ)dF (θ) is decreasing in x, we have

∫ max{x̃,θ}

θ

−`(x̃, θ)dF (θ) ≤
∫ max{x′,θ}

θ

−`(x′, θ)dF (θ).

Since
∫ θ̄

min{x,θ̄}−`(x, θ)dF (θ) is increasing in x, we have

∫ θ̄

min{x̃,θ̄}
−`(x̃, θ)dF (θ) ≤

∫ θ̄

min{x′′,θ̄}
−`(x′′, θ)dF (θ).

It follows that

−z ≥ max

{∫ max{x̃,θ}

θ

−`(x̃, θ)dF (θ),

∫ θ̄

min{x̃,θ̄}
−`(x̃, θ)dF (θ)

}
+ δEV ∗N

and therefore x̃ triggers an investigation.

Proof of Proposition 3: We first show that if z > z∗, then ρ∗N(x) = 1 iff x ≤ x̂,

µ∗N(x) = 0 for any x ∈ [0, 1], and EV ∗N = λ
1−δ . Condition (N1) is clearly satisfied

given the definition of x̂. Condition (N2) is satisfied since for any x, the payoff from

not investigating is at least as high as −ẑ + δEV ∗N , which is greater than −z if z >

ẑ − δEV ∗N = z∗. And (N3) is satisfied by plugging in ρ∗N , µ∗N and EV ∗N .

Note that if z < z∗, then µ∗N(x) = 0 for any x ∈ [0, 1] would violate (N2). Hence,

XN = ∅ if and only if z > z∗.

We next show that XN ⊂ (θ, θ̄). If XN = ∅, then it is clearly true. We next show

by contradiction that if XN 6= ∅, then θ < aN < bN < θ̄. Suppose aN ≤ θ. Consider

x = aN . Since aN ≤ θ, the DM’s dynamic payoff equals −z if she investigates, and

equals δEV ∗N if she does not investigate. Since aN = inf{x : µ∗(x) = 1}, it follows

that −z ≥ δEV ∗N . Note that for any x > θ̄, the DM’s dynamic payoff is −z if she

investigates, and δEV ∗N if she does not investigate. Hence, it must be the case that any

case x > θ̄ triggers an investigation. It follows that bN = 1. Moreover, since aN ≤ θ,

the DM makes the correct decision for any case x ≤ aN . It follows that

EV ∗N =

∫ aN

0

δEV ∗NdG(x)− z(1−G(aN)) = δG(aN)EV ∗N − z(1−G(aN)).

Since −z ≥ δEV ∗N , we have EV ∗N > δEV ∗N , but this is impossible since EV ∗N < 0.

Hence, we have aN > θ. A similar argument shows that bN < θ̄.
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We next prove that the uninformed DM permits x < aN and bans x > bN . Note that

the left-hand-side of (N2) achieves its minimum at x̂, which implies that if XN 6= ∅,

then x̂ ∈ XN , that is, aN ≤ x̂ ≤ bN . It follows from Lemma 1 that the uninformed DM

permits x < aN and bans x > bN .

Proof of Proposition 4: Recall from equation (A2) that

TV (s) = max{−z + A(s), gp(s) + δEV (max{x, L}, R), gb(s) + δEV (L,min{x,R})}.

Let KV (s) = 1 if TV (s) = −z + A(s) and KV (s) = 0 otherwise. Recall that F
denote the set of bounded measurable functions on S taking values in R. To prove the

proposition, we first establish the following lemma.

Lemma A.1. For (L,R) ∈ Se, if V ∈ F satisfies the following properties: (i) V is

decreasing in L and increasing in R, (ii) EV (L,R)−EV (L̂, R̂) ≤ C(L,R)−C(L̂, R̂),

and (iii) KV is decreasing in L and increasing in R, then TV also satisfies these

properties, that is, (i) TV is decreasing in L and increasing in R, (ii) ETV (L,R) −
ETV (L̂, R̂) ≤ C(L,R)−C(L̂, R̂), and (iii) KTV is decreasing in L and increasing in

R.

Proof: We first show that if V ∈ F is decreasing in L and increasing in R, then TV

is also increasing in L and decreasing in R. Fix x ∈ [0, 1]. If V is decreasing in L

and increasing in R, then EV (max{x, L}, R) and EV (L,min{x,R}) are decreasing in

L and increasing in R. Note that A(s) is decreasing in L and increasing in R, gp(s) is

constant in L and increasing in R, gb(s) is constant in R and decreasing in L. Hence,

TV (s) is decreasing in L and increasing in R.

Let ŝ = (L̂, R̂, x). We next show that if V ∈ F satisfies properties (i), (ii), and (iii),

then ETV (L,R)− ETV (L̂, R̂) ≤ C(L,R)− C(L̂, R̂). Consider the following cases.

(a) Suppose TV (ŝ) = −z + A(ŝ). Then KV (ŝ) = 1. Since KV is decreasing in

L and increasing in R, we have KV (s) = 1, which implies that TV (s) = −z + A(s).

Hence TV (s)− TV (ŝ) = A(s)− A(ŝ).

(b) Suppose TV (ŝ) > −z+A(ŝ). Without loss of generality, suppose that TV (ŝ) =

gp(ŝ) + δEV (max{x, L̂}, R̂). Note that KV (ŝ) = 0 and x < R̂. Suppose KV (s) = 1.

Then TV (s) = −z + A(s) and TV (s) − TV (ŝ) < A(s) − A(ŝ). Suppose KV (s) = 0
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and TV (s) = gp(s) + δEV (max{x, L}, R). Then

TV (s)− TV (ŝ) = δ
[
EV (max{x, L}, R)− EV (max{x, L̂}, R̂)

]
≤ δ[EV (L,R)− EV (L̂, R̂)] ≤ δ[C(L,R)− C(L̂, R̂)].

Suppose TV (s) = gb(s) + δEV (L,min{x,R}). There are two cases to consider, ei-

ther x > L̂ or x ≤ L̂. First suppose x > L̂. Then gb(ŝ) = gb(s). Since TV (ŝ) ≥
gb(ŝ) + δEV (L̂,min{x, R̂}), it follows that TV (s) − TV (ŝ) ≤ δEV (L,min{x,R}) −
δEV (L̂,min{x, R̂}) ≤ δ[C(L,R)−C(L̂, R̂)]. Next suppose x ≤ L̂. Note that TV (ŝ) =

gp(ŝ)+ δEV (max{x, L̂}, R̂) = gp(ŝ)+ δEV (L̂, R̂) and A(ŝ) = gp(s)+ δC(L̂, R̂). Hence,

A(ŝ)− TV (ŝ) = δC(L̂, R̂)− δEV (L̂, R̂). Note also that TV (s) = gb(s) + δEV (L, x) ≤
gb(s) + δEV (L,R) and A(s) ≥ gb(s) + δC(L,R). Hence A(s) − TV (s) > δC(L,R) −
δEV (L,R). It follows that A(s)− TV (s)−A(ŝ) + TV (ŝ) > δC(L,R)− δEV (L,R)−
δC(L̂, R̂) + δEV (L̂, R̂) ≥ 0. Therefore TV (s) − TV (ŝ) ≤ A(s) − A(ŝ). It fol-

lows that for all x ∈ [0, 1], we have TV (s) − TV (ŝ) ≤ A(s) − A(ŝ), and therefore

ETV (L,R)− ETV (L̂, R̂) ≤ E[A(s)− A(ŝ)] = C(L,R)− C(L̂, R̂).

Lastly we show that if V ∈ F satisfies properties (i), (ii), and (iii), then KTV

is decreasing in L and increasing in R. Since KTV (s) ∈ {0, 1} for any s ∈ S, it is

sufficient to show that if KTV (ŝ) = 1, then KTV (s) = 1.

Suppose KTV (ŝ) = 1. Consider x ∈ (L̂, R̂) first. Then we have

− z + A(ŝ) ≥ max{gp(ŝ) + δETV (x, R̂), gb(ŝ) + δETV (L̂, x)}. (A3)

Note that in this case, A(ŝ) = δC(L̂, R̂), A(s) = δC(L,R), gp(ŝ) = gp(s), gb(ŝ) = gb(s).

As established earlier, if V ∈ F satisfies properties (i), (ii), and (iii), then TV is de-

creasing in L and increasing in R and C(L,R)−C(L̂, R̂) ≥ ETV (L,R)−ETV (L̂, R̂).

Since L < L̂ < x < R̂ < R, we have max{L, x} = max{L̂, x} = x and min{x,R} =

min{x, R̂} = x. It follows thatETV (max{L, x}, R)−ETV (max{L̂, x}, R̂) = ETV (x,R)−
ETV (x, R̂) and ETV (L,min{x,R})−ETV (L̂,min{x, R̂}) = ETV (L, x)−ETV (L̂, x).

Since C(x,R)−C(x, R̂) ≥ ETV (x,R)−ETV (x, R̂) and C(L,R)−C(L̂, R̂) ≥ C(x,R)−
C(x, R̂), it follows that C(L,R)−C(L̂, R̂) ≥ ETV (max{L, x}, R)−ETV (max{L̂, x}, R̂).

Similarly, since C(L, x)−C(L̂, x) ≥ ETV (L, x)−ETV (L̂, x) and C(L,R)−C(L̂, R̂) >

C(L, x) − C(L̂, x), it follows that and C(L,R) − C(L̂, R̂) ≥ ETV (L,min{x,R}) −

38



ETV (L̂,min{x, R̂}). It then follows from (A3) that

−z + A(s) ≥ max{gp(s) + δETV (max{L, x}, R), gb(s) + δETV (L,min{x,R})}

and therefore KTV (s) = 1.

Next consider x /∈ (L̂, R̂), and without loss of generality, suppose that x ≤ L̂.

In this case, A(ŝ) − δC(L̂, R̂) = gp(ŝ) and A(s) − δC(L,R) ≥ gp(s). Specifically,

A(s)− δC(L,R) = gp(s) if x ≤ L and A(s)− δC(L,R) = 0 if L < x ≤ L̂. Hence,

− z + A(s)− gp(s)− δETV (max{L, x}, R)− [−z + A(ŝ)− gp(ŝ)− δETV (max{L̂, x}, R̂)]

≥ δ[C(L,R)− C(L̂, R̂)]− δ[ETV (x,R)− ETV (x, R̂)] ≥ 0.

It follows that −z + A(s) ≥ gp(s) + δETV (max{L, x}, R). We next show that −z +

A(s) ≥ gb(s) + δETV (L,min{x,R}). If x ≤ L, then clearly −z + A(s) ≥ gb(s) +

δETV (L,min{x,R}). Suppose L < x ≤ L̂. Note that −z+A(ŝ) ≥ gp(ŝ)+δETV (L̂, R̂)

implies that −z+δC(L̂, R̂) ≥ δETV (L̂, R̂). Since A(s) = δC(L,R) ≥ gb(s)+δC(L,R)

and C(L,R) − C(L̂, R̂) ≥ ETV (L,R) − ETV (L̂, R̂), it follows that −z + A(s) ≥
gb(s) + δETV (L,R) ≥ gb(s) + ETV (L,min{x,R}). Hence KTV (s) = 1.

Since V ∗B = TV ∗B and Lemma A.1 shows that the contraction mapping T preserves

properties (i), (ii) and (iii), it follows that V ∗B is decreasing in L and increasing in R.

It also follows that EV ∗B(L,R) − EV ∗B(L̂, R̂) ≤ C(L,R) − C(L̂, R̂). Since C(L,R) is

continuous in L and R, we have EV ∗B(L,R) is continuous in L and R. Since the optimal

policy satisfies µ∗B(s) = KV ∗B(s), it also follows from Lemma A.1 that µ∗B is decreasing

in L and increasing in R.

Proof of Proposition 5: Fix (L,R) ∈ Se. We first prove part (i). Note that gp(s) is

decreasing in x and gb(s) is increasing in x. Since V ∗B is decreasing in L by Proposition

4, V ∗B(π(s, P ), x′) = V ∗B((max{L, x}, R), x′) is decreasing in x. Similarly, since V ∗B is

increasing in R, V ∗B(π(s, B), x′) = V ∗B((L,min{R, x}), x′) is increasing in x.

Suppose xi (i = 1, 2) triggers an investigation. Then we have

−z + A(L,R, xi) ≥ gp(L,R, xi) + δEV ∗B(max{L, xi}, R) (A4)

−z + A(L,R, xi) ≥ gb(L,R, xi) + δEV ∗B(L,min{R, xi}). (A5)

Recall that L = [θ,max{L, θ}] and R = [min{R, θ̄}, θ̄]. Suppose x̃ ∈ [x1, x2]. There
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are three cases to consider.

(a) Suppose 1L(x̃) = 1R(x̃) = 0. Then A(L,R, x̃) ≥ A(L,R, xi) for i = 1, 2. Since

x̃ > x1, gp(s) is decreasing in x and EV ∗B(max{L, x}, R) is decreasing in x, it follows

from (A4) that

−z + A(L,R, x̃) ≥ gp(L,R, x̃) + δEV ∗B(max{L, x̃}, R).

Since x̃ < x2, gb(s) is increasing in x and EV ∗B(L,min{R, x}) is increasing in x, it

follows from (A5) that

−z + A(L,R, x̃) ≥ gp(L,R, x̃) + δEV ∗B(L,min{R, x̃}).

Hence, it is optimal for the DM to investigate when x = x̃.

(b) Suppose 1L(x̃) = 1. Then 1R(x̃) = 0 and 1R(x1) = 0. Moreover, we have

A(L,R, x̃) = gp(L,R, x̃)+δC(L,R), A(L,R, x1) ≥ gp(L,R, x1)+δC(L,R), gb(L,R, x̃) =

−∞, and gb(L,R, x1) = −∞. From (A4), we have

−z + δC(L,R) ≥ δEV ∗B(max{L, x1}, R).

Since EV ∗B(max{L, x}, R) is decreasing in x and x̃ > x1, it follows that

−z + δC(L,R) ≥ δEV ∗B(max{L, x̃}, R)

and therefore

−z + A(L,R, x̃) ≥ gp(L,R, x̃) + δEV ∗B(max{L, x̃}, R).

Since gb(L,R, x̃) = −∞, we also have

−z + A(L,R, x̃) > gb(L,R, x̃) + δEV ∗B(L,min{R, x̃}).

Hence, it is optimal for the DM to investigate when x = x̃.

(c) Suppose 1R(x̃) = 1. Then 1L(x̃) = 1L(x2) = 0. Moreover, we have A(L,R, x̃) =

gb(L,R, x̃) + δC(L,R), A(L,R, x2) ≥ gb(L,R, x2) + δC(L,R), gp(L,R, x̃) = −∞, and

gp(L,R, x2) = −∞. A similar argument as in case (ii) shows that it is optimal for the

DM to investigate when x = x̃.
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We next prove part (ii) by contradiction. Consider a case x /∈ (L,R). Since the

DM has to follow the precedent in the current period regarding x, the difference in

her current period payoff between investigating and not investigating is −z. If she

investigates, her continuation payoff is δC(L,R); if she does not investigate, she does

not change the precedent since x /∈ (L,R) and therefore her continuation payoff is

δEV ∗B(L,R).

Suppose x triggers an investigation. Then we have −z + δC(L,R) ≥ δEV ∗B(L,R).

Note that neither side of the inequality depends on x, which implies that any x /∈
(L,R) triggers an investigation given precedent (L,R). It follows from part (i) of the

proposition that any x ∈ [0, 1] triggers an investigation given precedent (L,R). Hence,

EV ∗B(L,R) = −z + C(L,R), which contradicts −z + δC(L,R) ≥ δEV ∗B(L,R) since

−z < 0 and δ < 1. Hence, x /∈ (L,R) does not trigger an investigation.

Lemma A.2. If L < a(L,R) ≤ b(L,R) < R, then XB(L,R) is closed, and the DM

is indifferent between investigating and not investigating under precedent (L,R) if x =

a(L,R) or if x = b(L,R).

Proof: Suppose L < a(L,R) ≤ b(L,R) < R and consider x ∈ (L,R). Since x ∈ (L,R),

the DM does not have to follow any precedent in her ruling of x. It follows that her

expected current-period payoff in making a ruling regarding x without an investigation

is continuous in x for x ∈ (L,R) since `(x, θ) is continuous in x for any x 6= θ. Since

EV ∗B is also continuous by Proposition 4, the DM’s dynamic payoff if she makes a ruling

regarding x without an investigation is continuous in x for x ∈ (L,R). Recall that

the DM’s dynamic payoff if she investigates when the case is x is −z + A((L,R), x).

Since x ∈ (L,R), we have A((L,R), x) = δC(L,R), which is constant in x. Hence,

the DM’s dynamic payoff if she investigates when the case is x is also continuous in

x. It follows the DM is indifferent between investigating and not investigating when

x = a(L,R) and when x = b(L,R). Recall that we assume that when the DM is

indifferent between investigating and not investigating, she investigates. Hence, if

L < a(L,R) ≤ b(L,R) < R, then the set of cases that the uninformed DM investigates

is the closed interval [a(L,R), b(L,R)].

Proof of Proposition 6: Recall that a1 = a(L1, R1) and b1 = b(L1, R1). We first

show that XN ⊆ XB(L1, R1). Recall that XN = [aN , bN ] when XN 6= ∅. We next show

that a1 ≤ aN . A similar argument shows that b1 ≤ bN .
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For 0 ≤ a < b ≤ 1, let h(a, b) =
∫ a
θ

∫ a
θ
−`(x, θ)dG(x)dF (θ)+

∫ θ̄
b

∫ θ
b
−`(x, θ)dG(x)dF (θ).

Note that for any L,R, we have

EV ∗B(L,R) ≤ h(a(L,R), b(L,R)) + [G(b(L,R))−G(a(L,R))] [−z + δC(L,R)]

+ δEV ∗B(L,R) [G(a(L,R)) + 1−G(b(L,R))] ,

where the inequality comes from the property that EV ∗B(L,R) is decreasing in L and

increasing in R and that when the DM makes a decision without an investigation, the

precedent either stays the same or gets tighter.

It follows that

EV ∗B(L,R) ≤ h(a(L,R), b(L,R)) + [G(b(L,R))−G(a(L,R))] [−z + δC(L,R)]

1− δ [G(a(L,R)) + 1−G(b(L,R))]
.

Since C(a(L,R), b(L,R)) ≤ 0, we have EV ∗B(L,R) ≤ h(a(L,R),b(L,R))−z[G(b(L,R))−G(a(L,R))]
1−δ[G(a(L,R))+1−G(b(L,R))]

.

Consider any case x ∈ (L1, a1). Since x < a1, it does not trigger an investigation

given precedent (L1, R1) and we have
∫ x
θ
−`(x, θ)dF (θ)+δEV ∗B(x,R1) > −z. It follows

that ∫ x

θ

−`(x, θ)dF (θ) > −z − δEV ∗B(x,R1).

Recall that under nonbinding precedent, aN satisfies∫ aN

θ

−`(aN , θ)dF (θ) = −z − δEV ∗N . (A6)

Since EV ∗B(x,R1) ≤ EV ∗N , it follows that
∫ x
θ
−`(x, θ)dF (θ) >

∫ aN
θ
−`(aN , θ)dF (θ)

and therefore x < aN . Since this is true for any x < a1 we have a1 ≤ aN . A similar

argument shows that bN ≤ b1.

Suppose that X∞B 6= ∅. Let X∞B = (â, b̂). We next show that aN < â < b̂ < bN .

Note that if the precedent satisfies L = â and R = b̂, then x triggers an investigation

if and only if x ∈ (â, b̂). Hence, we have

EV ∗B(â, b̂) = h(â, b̂) +
(
−z + δC(â, b̂)

) [
G(b̂)−G(â)

]
+ δEV ∗B(â, b̂)

[
G(â) + 1−G(b̂)

]
,
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which implies that

EV ∗B(â, b̂) =
h(â, b̂)

1− δ[G(â) + 1−G(b̂)]
+
(
−z + δC(â, b̂)

) G(b̂)−G(â)

1− δ[G(â) + 1−G(b̂)]
. (A7)

Moreover, we have

−z + δC(â, b̂) =

∫ â

θ

−`(â, θ)dF (θ) + δEV ∗B(â, b̂) =

∫ θ̄

b̂

−`(b̂, θ)dF (θ) + δEV ∗B(â, b̂).

From the indifference condition above and (A7), we have∫ â

θ

−`(â, θ)dF (θ) = −z + δC(â, b̂)− δEV ∗B(â, b̂)

=
−(1− δ)z + (1− δ)δC(â, b̂)− δh(â, b̂)

1− δ[G(â) + 1−G(b̂)]
.

Since (1− δ)C(â, b̂) = h(â, b̂), it follows that∫ â

θ

−`(â, θ)dF (θ) =
−(1− δ)z

1− δ[G(â) + 1−G(b̂)]
.

Similarly, ∫ θ̄

b̂

−`(b̂, θ)dF (θ) =
−(1− δ)z

1− δ[G(â) + 1−G(b̂)]
.

From (5) and (A6), we have that under nonbinding precedent, aN and bN satisfy

∫ aN

θ

−`(aN , θ)dF (θ) =

∫ θ̄

bN

−`(bN , θ)dF (θ) =
−(1− δ)z

1− δ[G(aN) + 1−G(bN)]
− δh(aN , bN)

1− δ[G(aN) + 1−G(bN)]
.

For a ∈ [θ, θ̄], let β(a) be defined by
∫ a
θ
−`(aN , θ)dF (θ) =

∫ θ̄
β(a)
−`(bN , θ)dF (θ).

Also, let A equal the constant − δh(aN ,bN )
1−δ[G(aN )+1−G(bN )]

> 0.

Note that aN is the solution to∫ a

θ

−`(a, θ)dF (θ) =
−(1− δ)z

1− δ[G(a) + 1−G(β(a))]
+ A
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and â is the solution to∫ a

θ

−`(a, θ)dF (θ) =
−(1− δ)z

1− δ[G(a) + 1−G(β(a))]
.

If a = θ, then
∫ a
θ
−`(a, θ)dF (θ) = 0. Moreover, since −(1 − δ)z − δh(aN , bN) < 0

and −(1−δ)z
1−δ[G(θ)+1−G(θ̄)]

+ A < −(1−δ)z−δh(aN ,bN )

1−δ[G(θ)+1−G(θ̄)]
, it follows that −(1−δ)z

1−δ[G(a)+1−G(β(a))]
+ A < 0

for a = θ. Hence, for any a ∈ [θ, aN), we have∫ a

θ

−`(a, θ)dF (θ) >
−(1− δ)z

1− δ[G(a) + 1−G(β(a))]
+ A.

Since A > 0, this implies that for any a ∈ [θ, aN), we have∫ a

θ

−`(a, θ)dF (θ) >
−(1− δ)z

1− δ[G(a) + 1−G(β(a))]
.

It follows that â > aN . Since β(a) is decreasing in a, it follows that b̂ < bN .

Proof of Lemma 5: We first show that if z ≤ cL
3(1−δ) , then both xL and xH trigger an

investigation. Note that if both cases trigger an investigation, then EV ∗N = −z. This

is optimal if −z ≥ −1
3
cL + δEV ∗N and −z ≥ −1

3
cH + δEV ∗N , which are satisfied when

z ≤ cL
3(1−δ) .

We next show that if cL
3(1−δ) < z ≤ (2−δ)cH+δcL

6(1−δ) , then only xH triggers an investi-

gation. Note that if xH but not xL triggers an investigation, then EV ∗N = 1
2
(−z) +

1
2
(−1

3
cL + δEVp), implying that EV ∗N = − z+ 1

3
cL

2−δ . Hence, it is optimal that only xH

triggers an investigation if −z ≥ −1
3
cH + δEV ∗N and xL if −z < −1

3
cL + δEV ∗N , which

are satisfied when cL
3(1−δ) < z ≤ (2−δ)cH+δcL

6(1−δ) .

Finally, we show that if z > (2−δ)cH+δcL
6(1−δ) , then neither xH nor xL triggers an inves-

tigation. Note that if neither xH or xL triggers an investigation, then EV ∗N = − cL+cH
6(1−δ) .

Hence, it is optimal that neither cases trigger an investigation if −z < −1
3
cH + δEV ∗N

and −z < −1
3
cL + δEV ∗N , which are satisfied when z > (2−δ)cH+δcL

6(1−δ) .

Lemma 5 follows by letting zN = cL
3(1−δ) and z̄N = (2−δ)cH+δcL

6(1−δ) .

Proof of Lemma 6: Consider x1 = xL. If the DM investigates, her payoff is −z, and

if she does not, her payoff is −1
3
cL + δEV ∗B(xL, 1). Hence, xL triggers an investigation

under the initial precedent if −z ≥ −1
3
cL + δEV ∗B(xL, 1).

To find EV ∗B(xL, 1), note that under precedent (xL, 1), xL does not trigger investi-
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gation, and xH triggers investigation if and only if −z − δ
6(1−δ)cL ≥ −1

3
cH − δ

6(1−δ)cL −
δ

6(1−δ)cH , that is, z ≤ 2−δ
6(1−δ)cH .

Hence, if z ≤ 2−δ
6(1−δ)cH , then EV ∗B(xL, 1) = 1

2
[−1

3
cL + δEV ∗B(xL, 1)] + 1

2
[−z −

δ
6(1−δ)cL], which implies that EV ∗B(xL, 1) = − z

2−δ − 1
6(1−δ)cL. And if z > 2−δ

6(1−δ)cH ,

then EV ∗B(xL, 1) = 1
2
[−1

3
cL + δEV ∗B(xL, 1)] + 1

2
[−1

3
cH + δEV ∗B(xL, 1)], which implies

that EV ∗B(xL, 1) = − 1
6(1−δ)cL − 1

6(1−δ)cH .

Substituting EV ∗B(xL, 1) in the condition −z ≥ −1
3
cL + δEV ∗B(xL, 1), we find that

if z ≤ 2−δ
6(1−δ)cH , then under the initial precedent, xL triggers investigation if −z ≥

−1
3
cL + δ[− z

2−δ − 1
6(1−δ)cL], that is, if z ≤ (2−δ)2

12(1−δ)2 cL. And if z > 2−δ
6(1−δ)cH , then under

the initial precedent, xL triggers investigation iff −z ≥ −1
3
cL + δ[− 1

6(1−δ)cL− 1
6(1−δ)cH ],

that is, if z ≤ 2−δ
6(1−δ)cL + δ

6(1−δ)cH .

Note that 2−δ
6(1−δ)cH > (2−δ)2

12(1−δ)2 cL if and only if cH
cL
> 2−δ

2−2δ
and 2−δ

6(1−δ)cH > 2−δ
6(1−δ)cL +

δ
6(1−δ)cH if and only if cH

cL
> 2−δ

2−2δ
.

Suppose cH
cL
> 2−δ

2−2δ
. Then 2−δ

6(1−δ)cH > (2−δ)2
12(1−δ)2 cL and 2−δ

6(1−δ)cH > 2−δ
6(1−δ)cL + δ

6(1−δ)cH .

It follows that xL triggers investigation under the initial precedent iff z ≤ (2−δ)2
12(1−δ)2 cL.

Suppose cH
cL
≤ 2−δ

2−2δ
. Then 2−δ

6(1−δ)cH ≤
(2−δ)2

12(1−δ)2 cL and 2−δ
6(1−δ)cH ≤ 2−δ

6(1−δ)cL + δ
6(1−δ)cH .

It follows that xL triggers investigation under the initial precedent if z ≤ 2−δ
6(1−δ)cH or if

2−δ
6(1−δ)cH < z ≤ 2−δ

6(1−δ)cL + δ
6(1−δ)cH , that is, if z ≤ 2−δ

6(1−δ)cL + δ
6(1−δ)cH .

Next consider x1 = xH . An investigation takes place if and only if −z ≥ −1
3
cH +

δEV ∗B(0, xH). Straightforward calculation similar to the above shows that if z ≤
2−δ

6(1−δ)cL, then EV ∗B(0, xH) = − z
2−δ − 1

6(1−δ)cH , and in this case, xH triggers an investi-

gation if z ≤ (2−δ)2
12(1−δ)2 cH . And if z > 2−δ

6(1−δ)cL, then EV ∗B(0, xH) = − 1
6(1−δ)cL − 1

6(1−δ)cH ,

and in this case, xH triggers an investigation if z ≤ 2−δ
6(1−δ)cH+ δ

6(1−δ)cL. Since 2−δ
6(1−δ)cH ≤

(2−δ)2
12(1−δ)2 cL and 2−δ

6(1−δ)cH ≤ 2−δ
6(1−δ)cL+ δ

6(1−δ)cH , it follows that xH triggers an investigation

if z ≤ 2−δ
6(1−δ)cH + δ

6(1−δ)cL.

Let z̄B = 2−δ
6(1−δ)cH + δ

6(1−δ)cL. And let zB = (2−δ)2
12(1−δ)2 cL if cH

cL
≥ 2−δ

2−2δ
and zB =

2−δ
6(1−δ)cL + δ

6(1−δ)cH if cH
cL
< 2−δ

2−2δ
. Note that zB < z̄B. It follows that under the initial

precedent, if z ≤ zB, then both xL and xH trigger an investigation; If zB < z ≤ z̄B,

then only xH triggers an investigation; if z > z̄B, then neither triggers an investigation.

Recall that zN = cL
3(1−δ) and z̄N = (2−δ)cH+δcL

6(1−δ) . Hence, zN < zB and z̄N = z̄B.
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Appendix B: Partial learning

Let θLM denote the informational state such that the DM believes that θ = θL

and θM with equal probability. Define θMH and θLMH similarly. In what follows, we

assume that `(xL, θL) < `(xL, θM) and `(xH , θH) < `(xH , θM), which imply that under

nonbinding precedent, the DM finds it optimal to permit xL in state θLM and to ban

xH in state θMH .

Consider the initial informational state θLMH . As the next two lemmas show, the

characterization and the comparison of the optimal investigation policies with partial

learning are qualitatively the same as those in Lemma 5 and 6.

Lemma B.1. There exist z′N and z̄′N such that under nonbinding precedent in state

θLMH , if z ≤ z′N , both xL and xH trigger an investigation; if z′N < z ≤ z̄′N , only xH

triggers an investigation; if z > z̄′N , there is no investigation.

Proof: For any informational state sθ, let EV ∗N(sθ) denote the DM’s equilibrium payoff

in state sθ. Consider informational state θLM . Note that xH does not trigger an

investigation, and if xL triggers an investigation, then EV ∗N(θLM) = 1
2
(0+δEV ∗N(θLM))−

1
2
z, which implies that EV ∗N(θLM) = − z

2−δ . Since it is optimal to investigate in state

θLM if−z ≥ −1
2
cL+EV ∗N(θLM), it follows that xL triggers an investigation if z ≤ cL(2−δ)

4(1−δ) .

Hence, EV ∗N(θLM) = − z
2−δ if z ≤ cL(2−δ)

4(1−δ) and EVN(θLM) = − cL
4(1−δ) if z ≥ cL(2−δ)

4(1−δ) .

Similarly, in informational state θMH , xH triggers an investigation iff z ≤ cH(2−δ)
4(1−δ) .

Hence, EV ∗N(θMH) = − z
2−δ if z ≤ cH(2−δ)

4(1−δ) and EV ∗N(θMH) = − cH
4(1−δ) if z > cH(2−δ)

4(1−δ) . In

what follows, we focus on the case in which z ≤ cH(2−δ)
4(1−δ) for simplicity. (Similar results

can be derived when z > cH(2−δ)
4(1−δ) .)

Consider state θLMH . We first show that if z ≤ 2−δ
(1−δ)(6−δ)cL, then both xL and

xH trigger an investigation. Note that if both xL and xH trigger an investigation,

then EV ∗N(θLMH) = −z + δ
3
(EV ∗N(θMH) + EV ∗N(θLM)) = − 6−δ

3(2−δ)z. Since xL triggers

an investigation iff −z + 2
3
δEV ∗N(θMH) ≥ −1

3
cL + δEV ∗N(θLMH) and xH triggers an

investigation iff −z+ 2
3
δEV ∗N(θLM) ≥ −1

3
cH +δEV ∗N(θLMH), it follows that both trigger

an investigation iff z ≤ 2−δ
(1−δ)(6−δ)cL.

We next show that if 2−δ
(1−δ)(6−δ)cL < z ≤ (2−δ)[(2−δ)cH+δcL]

2(1−δ)(6−δ) , then only xH triggers

an investigation. Note that if only xH triggers an investigation, then EV ∗N(θLMH) =
1
2
[−1

3
cL + δEV ∗N(θLMH)] + 1

2
[−z + 2

3
δEV ∗N(θLM)], which implies that EV ∗N(θLMH) =

1
2−δ [−1

3
cL−z+ 2

3
δEV ∗N(θLM)] = 1

2−δ [−1
3
cL−z+ 2δz

3(2−δ) ]. Since xH triggers an investigation
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iff −z+ 2
3
δEV ∗N(θLM) ≥ −1

3
cH + δEV ∗N(θLMH) and xL does not trigger an investigation

iff −z + 2
3
δEV ∗N(θMH) < −1

3
cL + δEV ∗N(θLMH), it follows that if 2−δ

(1−δ)(6−δ)cL < z ≤
(2−δ)[(2−δ)cH+δcL]

2(1−δ)(6−δ) , then only xH triggers an investigation.

If neither xL or xH triggers an investigation, then EV ∗N(θLMH) = − cL+cH
6(1−δ) . Since

neither case triggers an investigation if −z+ 2
3
δEV ∗N(θLM) < −1

3
cH +δEV ∗N(θLMH) and

if −z + 2
3
δEV ∗N(θMH) < −1

3
cL + δEV ∗N(θLMH), it follows that if z > (2−δ)[(2−δ)cH+δcL]

2(1−δ)(6−δ) ,

then no investigation takes place in state θLMH .

The lemma follows by letting z′N = 2−δ
(1−δ)(6−δ)cL and z̄′N = (2−δ)[(2−δ)cH+δcL]

2(1−δ)(6−δ) .

Lemma B.2. There exists z′B and z̄′B such that in the first period under binding prece-

dent, if z ≤ z′B, both xL and xH trigger investigation; if z′B < z ≤ z̄′B, only xH triggers

investigation; if z > z̄′B, there is no investigation. Furthermore, z̄′N = z̄′B and z′N < z′B.

Proof: Under binding precedent and with partial learning, a state s consists of the

precedent (L,R) and the informational state sθ. Let EV ∗B(L,R, sθ) denote the DM’s

equilibrium payoff in state s. Consider the state in the first period, (L1, R1, θLMH). The

case xL triggers an investigation iff−z+2
3
δEV ∗B(xL, R1, θMH) ≥ −1

3
cL+δEV ∗B(xL, R1, θLMH).

In state (xL, R1, θLMH), the DM’s problem is the same as in perfect learning. To

see this, note that given the precedent (xL, R1), the DM must permit xL. There-

fore xL does not trigger an investigation and the value of information from perfect

learning or partial learning when xH triggers an investigation is the same. As shown

in the proof of Lemma 6, if z ≤ 2−δ
6(1−δ)cH , then xH triggers an investigation and

EV ∗B(xL, R1, θLMH) = − z
2−δ − 1

6(1−δ)cL; if z > 2−δ
6(1−δ)cH , then xH does not trigger an

investigation and EV ∗B(xL, R1, θLMH) = − 1
6(1−δ)cH − 1

6(1−δ)cL.

In state (xL, R1, θMH), the DM’s problem is the same as in nonbinding precedent

since in the informational state θMH , it is optimal to permit xL. It follows that

EV ∗B(xL, R1, θMH) = − z
2−δ .

Substituting for EV ∗B(xL, R1, θMH) and EV ∗B(xL, R1, θLMH), we find that the con-

dition for xL to trigger an investigation in state (L1, R1, θLMH) is z ≤ (2−δ)2
4(1−δ)(3−2δ)

cL for

z ≤ 2−δ
6(1−δ)cH and is z ≤ (2−δ)2

2(1−δ)(6−δ)cL + δ(2−δ)
2(1−δ)(6−δ)cH for z > 2−δ

6(1−δ)cH .

Note that 2−δ
6(1−δ)cH ≥

(2−δ)2
4(1−δ)(3−2δ)

cL and 2−δ
6(1−δ)cH ≥

(2−δ)2
2(1−δ)(6−δ)cL + δ(2−δ)

2(1−δ)(6−δ)cH are

both equivalent to cH
cL
≥ 6−3δ

6−4δ
. Hence, if cH

cL
≥ 6−3δ

6−4δ
, then xL triggers an investigation in

state (L1, R1, θLMH) iff z ≤ (2−δ)2
4(1−δ)(3−2δ)

cL; if cH
cL
< 6−3δ

6−4δ
, then xL triggers an investigation

in state (L1, R1, θLMH) iff z ≤ (2−δ)2
2(1−δ)(6−δ)cL + δ(2−δ)

2(1−δ)(6−δ)cH .
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We can derive the conditions for xH to trigger an investigation in a similar way.

Since cL
cH
< 6−3δ

6−4δ
, xH triggers an investigation in state (L1, R1, θLMH) iff z ≤ (2−δ)2

2(1−δ)(6−δ)cH+
δ(2−δ)

2(1−δ)(6−δ)cL.

Note that if cH
cL
≥ 6−3δ

6−4δ
, then (2−δ)2

4(1−δ)(3−2δ)
cL <

(2−δ)2
2(1−δ)(6−δ)cH + δ(2−δ)

2(1−δ)(6−δ)cL. If cH
cL
≥

6−3δ
6−4δ

, let z′B = (2−δ)2
4(1−δ)(3−2δ)

cL; if cH
cL
< 6−3δ

6−4δ
, let z′B = (2−δ)2

2(1−δ)(6−δ)cL + δ(2−δ)
2(1−δ)(6−δ)cH . Also,

let z̄′B = (2−δ)2
2(1−δ)(6−δ)cH + δ(2−δ)

2(1−δ)(6−δ)cL. Note that z̄′N = z̄′B and z′N < z′B. Lemma B.2

follows.

Hence, if z ≤ z′N , then both cases trigger an investigation in the first period under

either institution; if z > z̄′N = z̄′B, then neither case trigger an investigation in the first

period under either institution; if z′N < z ≤ z′B, then under binding precedent, both

cases trigger an investigation in the first period whereas under nonbinding precedent,

only xH triggers an investigation in the first period; if z < z′B < z̄′N , then only xH

triggers an investigation in the first period under either institution. Accordingly, we

have the following comparison of social welfare analogous to Proposition 7.

Proposition B.1. If the cost of information acquisition is sufficiently low or suf-

ficiently high, then welfare is the same under two institutions with partial learning,

otherwise, it is different. Formally, (i) If z ≤ z′N or z > z̄′N = z̄′B, then welfare is the

same under nonbinding precedent and binding precedent. (ii) If z′N < z ≤ z′B, then

welfare is higher under binding precedent. (iii) If z′B < z ≤ z̄′N = z̄′B, then welfare is

higher under nonbinding precedent.
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