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1 Introduction

Network connectedness is central to modern financial risk measurement and management. It

features prominently in key aspects of market risk (return connectedness and portfolio con-

centration), credit risk (default connectedness), counter-party and gridlock risk (bilateral and

multilateral contractual connectedness), and not least, systemic risk (system-wide connect-

edness). It is also central to understanding underlying fundamental macroeconomic risks, in

particular business cycle risk (e.g., intra- and inter-country real activity connectedness).

Recent theoretical work has therefore emphasized network connectedness and formation

in financial and industry contexts, as in Jackson (2008), Easley and Kleinberg (2010), Ace-

moglu et al. (2012), and Babus (2013). Related empirical work, which sometimes includes

banking contexts, has begun to appear; see for example, Adrian and Brunnermeier (2008),

Diebold and Yilmaz (2009), Acharya et al. (2010), Billio et al. (2012), Allen et al. (2012),

Acharya et al. (2012), Barigozzi and Brownlees (2013), Diebold and Yilmaz (2014), Brown-

lees and Engle (2015), Giglio et al. (2015), and Bianchi et al. (2015).

There is, however, little empirical research on global bank connectedness. This is particu-

larly unfortunate given the role of financial institutions in the Great Recession of 2007-2009,

and given the many channels that produce linkages among banks, such as counter-party

linkages associated with positions in various assets and recorded in balance sheets, and con-

tractual linkages associated with services provided to clients and other institutions.

A key reason for the lack of empirical work on global bank connectedness is the high

dimensionality of bank networks. There are simply very many important banks globally,

which renders unrestricted vector-autoregressive (VAR) network approximations intractable.

Hence, for example, Diebold and Yilmaz (2014) were forced to limit their analysis to U.S.

institutions. Although a useful first step, such an analysis is clearly incomplete, given the

global nature of the financial services industry.

In this paper we progress on both the methodological and substantive fronts. On the

methodological side, we overcome the dimensionality problem while nevertheless remaining

squarely in the Diebold-Yilmaz network connectedness measurement tradition, which is in-

timately related to the key centrality measure in the modern network literature, the mean

node degree. We do so by estimating the network using lasso methods, which select and

shrink in optimal ways.

On the substantive side, no longer constrained by the dimensionality problem, we perform

a truly global bank connectedness analysis. In particular, we characterize the static and

dynamic high-frequency stock-return volatility connectedness of all banks among the world’s



top 150 globally, 2004-2014.

We proceed as follows. In section 2, we briefly summarize the Diebold-Yilmaz connectedness-

measurement framework. In section 3, we introduce “lassoed” large VAR’s as empirical ap-

proximating models in the Diebold-Yiamaz framework. In sections 4 and 5, respectively, we

provide static and dynamic characterizations of the global bank network. We conclude in

section 6.

2 Population Network Connectedness

All network connectivity analyses require approximating models. Here we use vector au-

toregressions, with network connectedness measures based on variance decompositions, as

proposed and developed in a series of papers that includes Diebold and Yilmaz (2009),

Diebold and Yilmaz (2012), and Diebold and Yilmaz (2014).

Such connectedness measures are appealing for several reasons. First, they make obvious

intuitive sense, answering a key question, which at the most granular pairwise level is “How

much of entity i’s future uncertainty (at horizon H) is due to shocks arising not with entity

i, but rather with entity j?”

Second, connectedness measures based on variance decompositions allow connectedness

to differ across horizons, facilitating examination of a variety of horizons and selection of a

preferred horizon if desired. This is important because, for example, 1-day connectedness

may be very different from 10- or 30 day connectedness.1

Third, Diebold and Yilmaz (2014) show that connectedness measures based on variance

decompositions are closely linked to modern network theory, in particular the degree distri-

bution and mean degree, and that they are also closely linked to recently-proposed measures

of systemic risk, such as marginal expected shortfall (Acharya et al. (2010)) and CoVaR

(Adrian and Brunnermeier (2008)).

2.1 Variance Decompositions in Approximating VAR’s

As an approximating model we use an N -variable VAR(p), xt =
∑p

i=1 Φixt−i+εt, where εt ∼
(0,Σ). The moving average representation is xt =

∑∞
i=0Aiεt−i, where the N xN coefficient

1Alternative frameworks that attempt to characterize network connectedness directly from a fitted sparse
VAR(1) coefficient matrix (e.g., Bonaldi et al. (2013)) are unfortunately limited to assessment of connected-
ness at a fixed horizon, by construction.
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matrices Ai obey the recursion Ai = Φ1Ai−1 + Φ2Ai−2 + . . . + ΦpAi−p, with A0 an N xN

identity matrix and Ai = 0 for i < 0.

Standard variance decompositions based on Cholesky factorization depend on the order-

ing of the variables, significantly complicating the study of directional connectedness. Hence

Diebold and Yilmaz (2012) suggest exploiting the generalized VAR framework of Koop et al.

(1996) and Pesaran and Shin (1998), which produces variance decompositions invariant to

ordering. Instead of attempting to orthogonalize shocks, the generalized approach allows for

correlated shocks but accounts for them appropriately.

2.2 Pairwise Directional Connectedness

Firm j ’s contribution to firm i ’s H -step-ahead generalized forecast error variance, θgij(H), is

θgij(H) =
σ−1jj

∑H−1
h=0 (e′iAhΣej)

2∑H−1
h=0 (e′iAhΣA

′
hei)

, H = 1, 2, ..., (1)

where Σ is the covariance matrix for the error vector ε, σjj is the standard deviation of the

error term for the jth equation and ei is the selection vector with one as the ith element and

zeros otherwise.

Because we work in the Koop-Pesaran-Potter-Shin generalized VAR framework, the vari-

ance shares do not necessarily add to 1; that is, in general
∑N

j=1 θ
g
ij(H)6=1. Hence we

normalize each entry of the generalized variance decomposition matrix (1) by the row sum:

θ̃gij(H) =
θgij(H)∑N
j=1 θ

g
ij(H)

. (2)

Now by construction
∑N

j=1 θ̃
g
ij(H) = 1 and

∑N
i,j=1 θ̃

g
ij(H) = N .

2.3 Total Directional Connectedness, “To” and “From”

Now we get less granular, moving from pairwise directional connectedness to total directional

connectedness. Total directional connectedness to firm i from all other firms j is:

Ci←• =

∑N
j=1
j 6=i

θ̃gij(H)∑N
i,j=1 θ̃

g
ij(H)

× 100 =

∑N
j=1
j 6=i

θ̃gij(H)

N
× 100. (3)
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Similarly, total directional connectedness from firm i to all other firms j is

C•←i =

∑N
j=1
j 6=i

θ̃gji(H)∑N
i,j=1 θ̃

g
ji(H)

× 100 =

∑N
j=1
j 6=i

θ̃gji(H)

N
× 100. (4)

2.4 System-Wide Connectedness

Now we get still less granular, proceeding to a system-wide level. Using the normalized entries

of the generalized variance decomposition matrix (2), we measure total connectedness as

C(H) =

∑N
i,j=1
i 6=j

θ̃gij(H)∑N
i,j=1 θ̃

g
ij(H)

=

∑N
i,j=1
i 6=j

θ̃gij(H)

N
. (5)

We call this total connectedness system-wide connectedness. It is simply the sum of total

directional connectedness whether “to” or “from.” (It doesn’t matter which way, because

“exports” must equal “imports” at the “global” level.)

3 Sample Bank Network Connectedness

Thus far we have discussed population network connectedness measurement in general. Now

we discuss sample connectedness measurement, specialized, moreover, to our context of

global banking. We first introduce our banks and sample period, and then our preferred

connectedness object (volatility), and finally, lasso methods for estimating the requisite high-

dimensional approximating models.

3.1 Banks and Sample Period

We study 96 banks from 29 developed and emerging economies, downloaded from Thomson-

Reuters, from September 12, 2003 through February 7, 2014. Our 96 banks are those in

the world’s top 150 (by assets) that were publicly traded throughout our sample. They are

largely banks from developed countries: 82 of the banks are from 23 developed economies,

and the remaining 14 banks are from 6 emerging economies.2

2See Appendix A for details as regards market capitalization, assets, bank codes, and Reuters tickers.
Our bank codes are easier to interpret than the Reuters tickers, particularly as regards identifying banks’
countries, so we use them in our empirical work.
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3.2 Volatility

For the most part we study the global bank stock return volatility network.

3.2.1 Background

Cyclical financial volatility connectedness is of direct interest. If volatility tracks investor

fear (e.g., the VIX is often touted as an “investor fear gauge”), then volatility connectedness

is fear connectedness. How connected is fear? How does it spread and cluster? Volatility

connectedness is also of special interest from the perspective of real-time crisis monitoring,

as volatilities tend to lurch and move together only in crises, whereas returns often move

closely together in both crises and upswings.

Secular volatility connectedness in financial contexts extends beyond risk considerations,

at least as traditionally conceptualized, and certain types of connectedness may be directly

desirable. For example, connectedness can arise from and vary with risk sharing via insur-

ance, links between sources and uses of funds as savings are channeled into investments,

patterns of comparative advantage that generate international trade, regional and global

capital market integration, and enhanced coordination of global financial regulation and

accounting standards.

Note that increases in secular volatility conectedness as described above are associated

with something “good,” whereas cyclical volatility conectedness as described above are asso-

ciated with something “bad”. Hence connectedness is neither intrinsically good nor intrinsi-

cally bad; instead, it depends on the situation and context.3 In any event connectedness is

important, and the ability to measure it accurately is therefore useful.

3.2.2 Data Requirements

It is fortunate that we do not require high-frequency balance sheet and related information,

which is unavailable in real time. Instead we need only high-frequency stock return data,

which are readily available. Stock market valuations are of course imperfect – like all valu-

ations – but thousands of smart analysts devote massive time and resources to uncovering

and interpreting information relevant for valuation.

3We will have more to say about this when we discuss our dynamic empirical results for the global bank
network in section 5.3.
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3.2.3 Estimation

Volatility is latent and must be estimated. Many approaches to volatility estimation have re-

ceived attention, including observation-driven GARCH-type models, parameter-driven stochas-

tic volatility models, realized volatility, and implied volatility.4 Volatilities tend to be

strongly serially correlated, particularly when observed at relatively high frequency. They

also tend to be distributed asymmetrically, with a right skew, and taking natural logarithms

produces approximate normality.

We construct daily stock return volatilities using daily stock price data (high, low, open,

close). We assume that volatility is fixed within a day but variable across days. Then,

following Garman and Klass (1980) and Alizadeh et al. (2002), we use the log of daily high,

low, opening and closing prices to estimate daily bank stock return volatility:

σ̃2
4,it = 0.511(Hit − Lit)2 − 0.019[(Cit −Oit)(Hit + Lit − 2Oit)

−2(Hit −Oit)(Lit −Oit)]− 0.383(Cit −Oit)
2, (6)

where Hit, Lit, Oit and Cit are, respectively, the logs of daily high, low, opening and closing

prices for bank stock i on day t.

3.3 Selecting and Shrinking the Approximating Model

In applications we base connectedness assessment on an estimated approximating VAR.

For compelling applications, we need the approximating VAR to be estimable in very high

dimensions, somehow recovering degrees of freedom.5 One can do so by pure shrinkage (as

with traditional informative-prior Bayesian analyses, or ridge regression) or pure selection

(as with traditional criteria like AIC and SIC), but blending shrinkage and selection, using

variants of the lasso, proves particularly appealing.

3.3.1 Lasso

Consider the least-squares estimator,

β̂ = arg min
β

T∑
t=1

(
yt −

∑
i

βixit

)2

,

4For a survey see Andersen et al. (2013).
5In what follows we refer to estimators that achieve this as “regularized,” and associated environments

as involving “regularization.”
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subject to the constraint:
K∑
i=1

|βi|q ≤ c.

Equivalently, consider the penalized estimation problem:

β̂ = arg min
β

 T∑
t=1

(
yt −

∑
i

βixit

)2

+ λ

K∑
i=1

|βi|q
 .

Concave penalty functions non-differentiable at the origin produce subset selection (e.g.,

q → 0) , whereas smooth convex penalties produce shrinkage (e.g., q = 2). Hence penalized

estimation nests and can blend selection and shrinkage. The case of q = 1, to which we now

turn, is of special interest.

The lasso (short for “least absolute shrinkage and selection operator”), introduced in the

seminal work of Tibshirani (1996), solves the L1-penalized regression problem:

β̂Lasso = arg min
β

 T∑
t=1

(
yt −

∑
i

βixit

)2

+ λ
K∑
i=1

|βi|

 .

Lasso shrinks and selects. It uses the smallest q for which the minimization problem is

convex, which is valuable computationally.

Note that although we want to impose (or at least encourage) sparsity in our approxi-

mating model, we do not necessarily want to impose sparsity in the implied bank network.

Our approach of shrinking and selecting on the approximating VAR, as opposed to shrinking

and selecting on the variance decomposition network directly, achieves that goal. The ap-

proximating VAR is intentionally shrunken and made sparse by the lasso, but the variance

decomposition matrix that drives our connectedness measures is a non-linear transformation

of the VAR coefficients and is therefore generally not sparse.6

Lasso has some undesirable properties, however, not least of which is that the oracle

property does not obtain. Hence we now proceed to consider lasso extensions with better

properties.

6Alternative frameworks that attempt to characterize network connectedness directly from a fitted sparse
VAR(1) coefficient matrix (e.g., Bonaldi et al. (2013)) force sparse networks, by construction. Moreover,
they also provide incomplete connectedness characterizations, because VAR connectedness arises not only
through cross-lag linkages, but also through the disturbance covariance matrix. Network connectedness
measures based on Granger-causal patterns (e.g. Billio et al. (2012)) also ignore the disturbance covariance
matrix and hence are similarly incomplete.
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3.3.2 Extensions

The adaptive lasso estimator (Zou (2006)) solves

β̂ALasso = arg min
β

 T∑
t=1

(
yt −

∑
i

βixit

)2

+ λ
K∑
i=1

wi|βi|

 ,

where wi = 1/ ˆ|β|
ν

i with β̂i the OLS estimate (or ridge if regularization is needed), and ν > 0.

Every parameter in the penalty function is weighted differently, in contrast to the “regular”

lasso. In particular, the weighting by inverse parameter estimates shrinks “small” coefficients

most heavily. The oracle property obtains.

The elastic net estimator (Zou and Hastie (2005)) solves

β̂Enet = arg min
β

 T∑
t=1

(
yt −

∑
i

βixit

)2

+ λ
K∑
i=1

(
α|βi|+ (1− α)β2

i

) .

Elastic net blends lasso and Ridge regression; that is, it combines a lasso L1 penalty and a

ridge L2 penalty. There are two tuning parameters, λ and α ∈ [0, 1]. Obviously elastic net is

lasso when α = 1 and ridge when α = 0. Unlike lasso, elastic net moves strongly-correlated

predictors in or out of the model together.

The adaptive elastic net estimator (Zou and Zhang (2009)) solves

β̂AEnet = arg min
β

 T∑
t=1

(
yt −

∑
i

βixit

)2

+ λ
K∑
i=1

wi
(
α|βi|+ (1− α)β2

i

) ,

where wi = 1/ ˆ|βi|
ν

with β̂i the OLS estimate (or ridge if regularization is needed), and ν > 0.

Adaptive elastic net blends adaptive lasso and elastic net and inherits good properties from

each: it has the oracle property like adaptive lasso and displays improved predictor handling

like elastic net.

In the empirical work to which we soon turn, we focus on estimation using the elastic

net and adaptive elastic net.
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Figure 1: Network Graph Color Spectrum

3.4 Graphical Display

The issue of how best to display results takes on great importance in high-dimensional

network modeling. In our subsequent empirical work, for example, we will estimate networks

with approximately 100 nodes, and presenting and examining 100× 100 = 10, 000 estimated

pairwise variance decompositions would be thoroughly uninformative. Hence we follow the

huge network literature in using graphical depictions, using node and link colors, thicknesses,

etc., to convey information about estimated network characteristics.

We study complete, weighted, directed networks, which we characterize using five aspects

of network graphs: node size, node location, node color, edge thickness and color, and edge

arrow sizes (two per edge, because the network is directed).7

Node Size Indicates Asset Size

We make node size a linear function of bank asset size.8 We assign the sizes of the largest and

smallest nodes, and then assign the rest linearly. We emphasize assets rather than market

capitalization for two reasons. First, market capitalization is subject to abrupt changes

due to fluctuations in stock price. Second, cross-country differences in financial system

characteristics and ownership structure of publicly traded companies have direct effects on

market capitalization levels, thereby producing persistent differences in cross-country market

capitalizations.

Node Color Indicates Total Directional Connectedness “To Others”

The node color indicates total directional connectedness “to others,” ranging from 3DRA02

(bright green), to E6DF22 (luminous vivid yellow), to CF9C5B (whiskey sour), to FC1C0D

(bright red), to B81113 (dark red; close to scarlet). We show the color range in Figure 1.

Node Location Indicates Average Pairwise Directional Connectedness

We determine node location using the ForceAtlas2 algorithm of Jacomy et al. (2014) as

implemented in Gephi. The algorithm finds a steady state in which repelling and attracting

7We use the open-source Gephi (https://gephi.github.io/) software to visualize large network graphs.
8Note well that we make node size and asset size linearly related, but not directly proportional. Huge

asset-size differences between the largest and smallest banks in our sample make directly-proportional rep-
resentation impossible.

9
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forces exactly balance, where (1) nodes repel each other, but (2) edges attract the nodes

they connect according to average pairwise directional connectedness “to” and “from.” The

steady state node locations depend on initial node locations and hence are not unique. This

is largely irrelevant, however, as we are interested in relative, not absolute, node locations

in equilibrium.

Edge Thickness Also Indicates Average Pairwise Directional Connectedness

Note that edge color indicates nothing; it never changes.

Edge Arrow Sizes Indicate Pairwise Directional Connectedness “To” and “From”

Note that because the full set of edge arrow sizes reveals the full set of pairwise directional

connectednesses, from which all else can be derived (with the exception of asset size), the

various additional devices employed as described (node color, node location, and edge thick-

ness) are in principle redundant and therefore unnecessary. In practice, however, they are

helpful for examining large networks in which, for example, the thousands of arrows can be

largely impossible to see. They are therefore invaluable supplements to examination of “edge

arrows” alone.

Trimming Improves Interpretabilty

We trim the less important half of estimated links. This dramatically improves interpretabil-

ity of the network graphs while simultaneously discarding almost no information, as the

trimmed links are responsible for only a negligible fraction of system-wide connectedness.

4 Static Estimation of the Global Bank Network

We estimate logarithmic volatility VAR’s using the adaptive elastic net as described above.

Then we compute variance decompositions and corresponding connectedness measures, using

the estimated VAR parameters.

4.1 The Individual Bank Network

We show the full-sample global bank network graph in Figure 2. A striking result is imme-

diately apparent: the graph shows clear bank clustering, both within and across countries.

The within-country bank clustering is ubiquitous, ranging from countries with many

banks in our sample (e.g., U.S., Canada, Australia, China, Japan) to those with only two or

three (e.g., Korea, Singapore, India, Malaysia).

10
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The cross-country clustering is also obvious throughout the graph, whose left side clearly

tends to contain banks if eastern countries, and whose right side clearly tends to contain

banks of western countries. Moreover, the western side clearly breaks into a large Anglo /

European bank cluster and a smaller American / Canadian cluster, each of which contains

sub-clusters.

It is not obvious that country of origin would be the dominant factor driving network

connectedness. One might have thought, for example, that other factors, such as bank size,

might dominate, but such is not the case. Japan illustrates this clearly. Although the

majority of very large banks are located in the Anglo / American / European cluster, the

three very large Japanese banks (Mitsubishi UFJ, Mizuho Financial, and Sumitomo Mitsui

Financial) are located not in the Anglo / American / European cluster, but rather in the

Japanese cluster.

4.1.1 Including Sovereign Bonds

Above we analyzed the global network of bank equity return volatilities, but we can also

include other important financial asset volatilities. This is potentially interesting because,

although the U.S. financial crisis did not have a sovereign debt component, the ensuing

European crisis did.

Against this background, we now include sovereign bond yield volatilities in the analysis,

in addition to bank stock volatilities. We include 10-year G-7 sovereigns (United States,

Germany, France, Japan, United Kingdom, Canada, and Italy), as well as those of Spain,

Greece and Australia. We plot the estimated individual bank / sovereign bond network in

Figure 3. The sovereigns appear in the upper left of the graph, which is otherwise similar to

Figure 2.9

Figure 3 delivers several related insights. First, the bonds cluster strongly. Second,

European bond nodes are nevertheless closer to European bank nodes, U.S. and Canadian

bond nodes are closer to U.S. and Canadian bank nodes, and Japanese and Australian bond

nodes are closer to Japanese and Australian bank nodes. Third, although the bond nodes are

pulled toward their respective country bank nodes, they remain completely distinct and never

appear inside their national/regional banking clusters: bank stocks form regional/national

clusters, and sovereign bonds are not part of those clusters.

9We denote bonds by the suffix “b” added to country acronyms.
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4.2 The Country Bank Network

In Figure 4 we aggregate the individual bank network graph to obtain the country bank

network graph.10 This serves two useful and distinct purposes.

First, examination of the country bank network is intrinsically interesting and a logical

next step. Our individual-bank analysis showed strong connectedness of banks both within

and across countries, so we now proceed to dig more deeply into the cross-country links.

Examination of the country bank network allows us to distinguish the relative strengths of

directional “to” and “from” connectedness of the most-connected country banking systems.

Second, the smaller number of edges in the country bank network makes visual interpre-

tation of connectedness simpler and more revealing. (29 countries produce only 292 = 841

edges in the country network, whereas 96 banks produce 962 = 9216 edges in the bank

network.)

The U.S. is clearly massively connected; its strongest links are with Canada, Great

Britain, and Australia. It is not always visible, but the arrows indicate greater connect-

edness from the U.S. to Canada, Australia and Great Britain than conversely.

The Anglo / European countries form a cluster just above the U.S. Of the Anglo / Euro-

pean countries, Britain has the strongest links to and from the U.S. The northern European

countries are to the south-east of the cluster; Sweden has the strongest connectedness with

the U.S. Ireland, Portugal, Greece, Finland and Austria are located on the perimeter of the

cluster.

Other countries are scattered farther away from the European cluster. As noted previ-

ously for individual banks, moving leftward on the graph generally takes one from western

to eastern countries.

We can also include sovereign bonds. In Figure 5 we show the estimated country bank /

sovereign bond network.

5 Dynamic Estimation of the Global Bank Network

We now characterize the global banking network dynamically. We use rolling estimation

with a 150-day window, with repeated cross validation of the penalty parameter λ in each

window.11 We start with comparisons of estimated network graphs ”before and after” major

10We place country nodes at the centers of gravity of the corresponding country banks.
11We switch from adaptive elastic net to elastic net dynamic estimation, as the latter produces less noisy

estimates under rolling estimation.
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crisis episodes, and then we proceed to examine the continuous real-time evolution of system-

wide connectedness.

5.1 Banks Pre- and Post-Lehman

The critical point in the financial crisis was Lehman’s bankruptcy, which was announced on

September 15, 2008. In Figure 6 we show the 96-bank network graphs on September 1, 2008

and on November 21, 2008. There is a clear difference between the individual bank network

graphs on the two dates.

In particular, connectedness of U.S. banks with others increased sharply after Lehman’s

collapse and the transformation of the U.S. financial crisis into a global one. Before the

Lehman collapse, the U.S. and European banks stood far apart around the Anglo / American

/ European cluster, with was visible gap in the network graph between the U.S. and European

banks. The Japanese and Chinese banks also stood apart. Once the Lehman shock hit global

markets, the entire individual bank network, perhaps with the exception of Chinese banks,

moved closer together, indicating the spread of volatility across bank stocks and countries.

A similar picture arises when we analyze the country bank network before and after

Lehman’s collapse. We show the country bank network graphs in Figure 7. Connectedness

was comparatively weak before the collapse, and much stronger afterward. Moreover, the

directional volatility connectedness from the U.S. to others increased substantially.

5.2 Banks, Bonds, and the European Debt Crisis

To see how the individual bank / sovereign bond network was transformed following the

European banking and sovereign bond crisis, we analyze the network graph once the Euro-

pean sovereign debt and banking crisis spread throughout the continent, affecting mostly the

periphery countries such as Greece, Portugal, Ireland, Italy and Spain. However, sovereign

bonds of the center countries such as Germany, France and the Great Britain could not be

isolated from the events unfolding in the periphery. As a result, by the end of the summer

2011 connectedness reached one of its high points on October 7, 2011.

In Figure 8(a) we show the individual bank / sovereign bond network on October 7, 2011,

when the volatility connectedness of the banks and bonds reached its local maximum. In

Figure 8(b), we once again show the full-sample graph, for comparison. The graphs are quite

different.

On Oct. 7, 2011, bond yield volatilities are no longer on the outskirts of the regional /

17



(a) September 1, 2008

(b) November 21, 2008

Figure 6: Individual Bank Network Pre- and Post-Lehman
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(a) September 1, 2008

(b) November 21, 2008

Figure 7: Country Bank Network Pre- and Post-Lehman
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(a) Rolling Estimation, 150-Day Window Ending October 7, 2011

(b) Full-Sample Estimation

Figure 8: Individual Bank / Sovereign Bond Network, Full-Sample vs. After the European
Crisis
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national banking clusters. Indeed, bond yield volatilities for the U.S., the UK, Germany and

France moved toward the center of the European / North American banking cluster. Italy

and Spain did not move to the center of the cluster, but they are still closer to the center of

Anglo / American / European cluster than they were in the full sample. Greek bonds, on

the other hand, are separated from other European bonds. Australian bonds moved closer

to the Japanese bonds. Furthermore, the nodes for the Japanese and Chinese banks, as well

as the ones from other countries, moved closer to the Anglo / American / European cluster,

indicating stronger volatility connectedness in October 2011 compared to the full sample.

All told, Figure 8 clearly shows how the European banking and sovereign debt crises had

become intertwined as of October 2011. The U.S. banks are farther away from the center of

the Anglo / American / European cluster, and the European banks are at the center, close

to the government bond markets of the U.S., France Germany, and the U.K.

5.3 System-Wide Connectedness

Now we consider system-wide connectedness. There are two interesting ways to display and

decompose it.

5.3.1 Trend and Cycle

The first involves distinguishing between secular (trend) and cyclical variation, as shown

in Figure 10. As indicated by the superimposed piece-wise linear trend, total system-wide

connectedness broadly increased for roughly the first half of our sample, peaking with the

Lehman bankruptcy. It then decreased gradually, albeit with some major bumps associated

with the European debt crisis, falling by almost twenty percentage points relative to its

peak by the end of the sample. The pre-Lehman upward connectedness trend is “good,”

corresponding to increased financial market integration, and the post-Lehman connectedness

trend is evidently similarly “bad,” presumably corresponding to decreased financial market

integration. Bursts of cyclical connectedness around trend, in contrast, are always “bad,”

corresponding to crises.

Let us first discuss aspects of the pre-Lehman episode. First, the connectedness of major

global bank stocks increased following the Fed’s unexpected decision to tighten monetary

policy in May and June 2006. However, there was no other major volatility shock across the

global banking system in 2006, so that estimated connectedness subsides as the observations

for May-June 2006 vanish from the rolling-window. Volatility connectedness was low in
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Figure 9: System-Wide Connectedness, With Superimposed Trend

early 2007. However, following the collapse of several mortgage originators in the U.S.,

connectedness increased sharply. This jump was followed by an even greater jump during

the liquidity crisis of August 2007, when it became apparent that along with the U.S. banks

the European banks also had to write off billions of dollars of losses due to their investments

in mortgage backed securities. By the end of 2007, it became apparent that the major U.S.

banks would end up writing of tens of billions of dollars in losses. Then in March 2008,

Bear Stearns, one of the top U.S. investment banks, was acquired by J.P. Morgan to avoid

bankruptcy.

Now consider the post-Lehman episode. Total system-wide connectedness reached its

peak following the Lehman bankruptcy on September 15, 2008, at which time the U.S.

government introduced a huge package of direct capital injection in major U.S. banks. As

months passed, the U.S. markets calmed, and total system-wide connectedness started to

trend downward. However, in 2009 and 2010 the EU member countries were shocked by

developments in the banking and sovereign debt markets of some of its peripheral member
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Figure 10: System-Wide Connectedness, Cross-Country and Within-Country

countries, including Greece, Ireland and Portugal. Then in 2011, Italy and Spain joined

the countries with stressed banking systems and sovereign bond markets. As a result, total

system-wide connectedness experienced two more significant jumps in May 2010 (due to

delay in the rescue package for Greece) and in July-August 2011 (due to spread of sovereign

debt and banking sector worries to Spain and Italy).

5.3.2 Cross-Country and Within-Country

The second way to display and decompose dynamic system-wide connectedness involves

decomposing it into two parts: cross-country and within-country, as in Figure 10. Cross-

country system-wide connectedness is the sum of all pairwise connectedness across banks

located in different countries. Within-country system-wide connectedness is the sum of

pairwise connectedness across banks in the same country. By construction cross-country and

within-country system-wide connectedness must sum to total system-wide connectedness.

The decomposition is of interest because exploring the country origins of volatility shocks

and their temporal evolution may help us better understand the dynamics of the global bank
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connectedness. Although we are interested in global banking network and global banking

connectedness, there are many banks in our sample located in the same country. Moreover,

the banks with the same country of origin tend to be more connected to each other as they

are exposed to the same country-level shocks.

The decomposition shows that most movements in total system-wide connectedness are

due to movements in cross-country system-wide connectedness. Cross-country system-wide

connectedness is around 40% from 2004 to May 2006, but it then begins to fluctuate sig-

nificantly. Following the Fed’s unexpected decision to further tighten U.S. monetary policy,

cross-country system-wide connectedness increases by around 15% in May-December 2006.

Following this episode, cross-country connectedness continues to vary throughout the sample.

5.4 Size and Eigenvalue Centrality

One of the primary goal of the network analysis is to evaluate the relative importance of

each individual member in the network. This is also relevant for the global banking network,

because, as shown during the recent global financial crisis, an individual bank may be the

source of financial stress that can be transmitted to the whole system. Furthermore, from

the policymakers point of view, detecting the systemically important financial institutions

carries enormous importance in preventing future crises. In order to shed some light on this

issue, we calculate the eigenvalue centrality of each bank in our sample using our estimated

network measures with the following formula.

St = Ct.St (7)

where St is Nx1 vector of centrality of the banks and Ct is NxN connectedness (adjacency)

matrix of the network at time t. So the eigenvalue centrality for a bank is equal to the sum

of the centralities of the connected banks weighted by the size of the respective edge. The

solution for St in the above equation corresponds to eigenvector associated with the largest

eigenvalue of connectedness matrix Ct.

As we’ve already obtained the dynamic volatility connectedness measures, we can also

calculate the dynamic centrality measures evolving over time. The dynamic analysis therefore

allows us to investigate the interaction between bank market capitalization and centrality

measures over time.

Toward that objective, we estimate the cross-section rank regression between bank eigen-

value centrality and bank market capitalization for each sub-sample window. Figure 11
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presents the rank regression coefficient, its p-value and the R2 of the rank regression over

the rolling windows. In line with the expectation, the bank eigenvalue centrality is highly

correlated with the bank size, with the correlation coefficient fluctuating between 0.4 and

0.6 in 2004 and 2005. More importantly, however, the correlation between the centrality

rank and the size rank weakened during the global financial crisis of late 2008 and early

2009. It even disappeared completely during the second phase of the European debt crisis

in the summer of 2011 and in the second half of 2012. Over these episodes the p-value of

the correlation coefficient moved well above the 5% level.

On the basis of this evidence we can conclude that, whereas the largest banks are more

likely to be central in the global financial system in good times, smaller banks can also be-

come central during bad times and generate volatility connectedness that will have systemic

implications.
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Figure 11: Market Capitalization and Eigenvalue Centrality: Rank Regression Results
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6 Conclusion

We have used lasso methods to shrink, select and estimate the network linking the publicly-

traded subset of the world’s top 150 banks, 2003-2014. We characterize static network con-

nectedness using full-sample estimation and dynamic network connectedness using rolling-

window estimation. Statically, we find that global banking connectedness is clearly linked

to bank location, not bank assets. Dynamically, we find that global banking connectedness

displays both secular and cyclical variation. The secular variation corresponds to gradual

increases/decreases during episodes of gradual increases/decreases in global market integra-

tion. The cyclical variation corresponds to sharp increases during crises, involving mostly

cross-country, as opposed to within-country, bank linkages.
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Appendices

A Global Bank Detail, by Assets

Here we provide detail on our sample of all 96 publicly-traded banks in the world’s top

150 (by assets). In Table 1 we show the banks ordered by assets, and we provide market

capitalizations and assets (both in billions of U.S. dollars), our bank codes (which shows

country), and Reuters tickers. The bank codes are easier to understand than the Reuters

ticker, particularly as regards identifying banks’ countries, so we use them in our empirical

work.

Table 1: Global Bank Detail (Ordered by Assets)

Bank Country Mcap Asset Bank Reuters
Name Code Ticker
HSBC Holdings UK 2010 2.671 hsba.gb hsba.ln
Mitsubishi UFJ Financial Group Japan 822 2.504 mtbh.jp X8306.to
BNP Paribas France 1000 2.482 bnp.fr bnp.fr
JPMorgan Chase & Co US 2180 2.416 jpm.us jpm
Deutsche Bank Germany 498 2.224 dbk.de dbk.xe
Barclays UK 682 2.174 barc.gb barc.ln
Credit Agricole France 367 2.119 aca.fr aca.fr
Bank of America US 1770 2.102 bac.us bac
Citigroup US 1500 1.880 c.us c
Mizuho Financial Group Japan 497 1.706 mzh.jp 8411.to
Societe Generale France 516 1.703 gle.fr gle.fr
Royal Bank of Scotland Group UK 356 1.703 rbs.gb rbs.ln
Sumitomo Mitsui Financial Group Japan 643 1.567 smtm.jp 8316.to
Banco Santander Spain 1030 1.538 san.es san.mc
Wells Fargo US 2430 1.527 wfc.us wfc
ING Groep Netherland 557 1.490 inga.nl inga.ae
Lloyds Banking Group UK 961 1.403 lloy.gb lloy.ln
Unicredit Italy 477 1.166 ucg.it ucg.mi
UBS Switzerland 802 1.138 ubsn.ch ubsn.vx
Credit Suisse Group Switzerland 503 983 csgn.ch csgn.vx
Goldman Sachs Group US 742 912 gs.us gs
Nordea Bank Sweden 556 870 nor.se ndasek.sk
Intesa Sanpaolo Italy 458 864 isp.it isp.mi
Morgan Stanley US 577 833 ms.us ms
Toronto-Dominion Bank Canada 827 827 td.ca td.t
Royal Bank of Canada Canada 935 825 ry.ca ry.t
Banco Bilbao Vizcaya Argentaria Spain 708 803 bbva.es bbva.mc
Commerzbank Germany 206 759 cbk.de cbk.xe

Continued on next page
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Table 1 – Continued from previous page
Bank Country Mcap Asset Bank Reuters
Name Code Ticker
National Australia Bank Australia 724 755 nab.au nab.au
Bank of Nova Scotia Canada 698 713 bns.ca bns.t
Commonwealth Bank of Australia Australia 1100 688 cba.au cba.au
Standard Chartered UK 524 674 stan.gb stan.ln
China Merchants Bank China 358 664 cmb.cn 600036.sh
Australia and New Zealand Banking Group Australia 776 656 anz.au anz.au
Westpac Banking Australia 918 650 wbc.au wbc.au
Shanghai Pudong Development Bank China 295 608 shgp.cn 600000.sh
Danske Bank Denmark 256 597 dan.dk danske.ko
Sberbank Rossii Russia 594 552 sber.ru sber.mz
China Minsheng Banking Corp China 297 533 cmb.cn 600016.sh
Bank of Montreal Canada 419 515 bmo.ca bmo.t
Itau Unibanco Holding Brazil 332 435 itub4.br itub4.br
Resona Holdings Japan 122 434 rsnh.jp 8308.to
Nomura Holdings Japan 256 422 nmrh.jp 8604.to
Sumitomo Mitsui Trust Holdings Japan 184 406 smtm.jp 8309.to
State Bank of India India 165 400 sbin.in sbin.in
DNB ASA Norway 289 396 dnb.no dnb.os
Svenska Handelsbanken Sweden 309 388 shba.se shba.sk
Skandinaviska Enskilda Banken Sweden 291 387 seba.se seba.sk
Canadian Bank of Commerce Canada 324 382 cm.ca cm.t
Bank of New York Mellon US 363 374 bk.us bk.us
U.S. Bancorp US 745 364 usb.us usb
Banco Bradesco Brazil 235 355 bbdc4.br bbdc4.br
KBC Groupe Belgium 260 333 kbc.be kbc.bt
PNC Financial Services Group US 435 320 pnc.us pnc.us
DBS Group Holdings Singapore 320 318 d05.sg d05.sg
Ping An Bank China 190 313 pab.cn 000001.sz
Woori Finance Holdings Korea 84 309 wrfh.kr 053000.se
Dexia Belgium 1 307 dexb.be dexb.bt
Capital One Financial US 415 297 cof.us cof
Shinhan Financial Group Korea 188 295 shf.kr 055550.se
Swedbank Sweden 308 284 swe.se sweda.sk
Hua Xia Bank China 124 276 hxb.cn 600015.sh
Erste Group Bank Austria 168 276 ebs.at ebs.vi
Banca Monte dei Paschi di Siena Italy 29 275 bmps.it bmps.mi
State Street Corporation US 30 243 stt.us stt.us
Banco de Sabadell Spain 131 225 sab.es sab.mc
United Overseas Bank Singapore 251 225 uob.sg u11.sg
Banco Popular Espanol Spain 13 204 pop.es pop.mc
Industrial Bank of Korea Korea 66 193 ibk.kr 024110.se
BB&T Corp US 266 183 bbt.us bbt
Bank of Ireland Ireland 146 182 bir.ie bir.db
National Bank of Canada Canada 131 180 na.ca na.t
SunTrust Banks US 203 175 sti.us sti.us
Banco Popolare Italy 36 174 bp.it bp.mi
Malayan Banking Berhad Malaysia 263 171 may.my maybank.ku

Continued on next page
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Table 1 – Continued from previous page
Bank Country Mcap Asset Bank Reuters
Name Code Ticker
Allied Irish Banks Ireland 999 162 aib.ie aib.db
Standard Bank Group South Africa 177 161 sbk.za sbk.jo
American Express US 947 153 axp axp
National Bank of Greece Greece 121 153 ete.gr ete.at
Macquarie Group Australia 160 143 mqg.au mqg.au
Fukuoka Financial Group Japan 33 137 ffg.jp 8354.to
Bank Of Yokohama Japan 63 134 boy.jp 8332.to
Pohjola Bank Finland 58 132 poh.fi poh1s.he
Fifth Third Bancorp US 185 130 fitb.us fitb.us
Regions Financial US 143 117 rf.us rf.us
Chiba Bank Japan 52 117 cbb.jp 8331.to
Unipol Gruppo Finanziario Italy 28 116 uni.it uni.mi
Banco Comercial Portugues Portugal 51 113 bcp.pr bcp.lb
CIMB Group Holdings Malaysia 163 113 cimb.my cimb.ku
Bank of Baroda India 37 113 bob.in bankbaroda.in
Turkiye Is Bankasi Turkey 89 112 isctr.tr isctr.is
Banco Espirito Santo Portugal 71 111 bes.pr bes.lb
Hokuhoku Financial Group Japan 25 108 hkf.jp 8377.to
Shizuoka Bank Japan 61 104 shzb.jp 8355.to
Mediobanca Banca di Credito Finanziario Italy 85 95 mb.it mb.mi
Yamaguchi Financial Group Japan 23 93 yfg.jp 8418.to

B Global Bank Detail, by Country

In Table 2 we show the same banks by country, starting with those countries with the most
banks, and proceeding through those countries with fewer banks.

Table 2: Global Bank Detail (Ordered by Country)

Bank Country Mcap Asset Bank Reuters
Name Code Ticker
JPMorgan Chase & Co US 2180 2.416 jpm.us jpm
Bank of America US 1770 2.102 bac.us bac
Citigroup US 1500 1.880 c.us c
Wells Fargo US 2430 1.527 wfc.us wfc
Goldman Sachs Group US 742 912 gs.us gs
Morgan Stanley US 577 833 ms.us ms
Bank of New York Mellon US 363 374 bk.us bk.us
U.S. Bancorp US 745 364 usb.us usb
PNC Financial Services Group US 435 320 pnc.us pnc.us
Capital One Financial US 415 297 cof.us cof

Continued on next page
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Table 2 – Continued from previous page
Bank Country Mcap Asset Bank Reuters
Name Code Ticker
State Street Corporation US 30 243 stt.us stt.us
BB&T Corp US 266 183 bbt.us BBT
SunTrust Banks US 203 175 sti.us sti.us
American Express US 947 153 axp axp
Fifth Third Bancorp US 185 130 fitb.us fitb.us
Regions Financial US 143 117 rf.us rf.us
Mitsubishi UFJ Financial Group Japan 822 2.504 mtbh.jp X8306.to
Mizuho Financial Group Japan 497 1.706 mzh.jp 8411.to
Sumitomo Mitsui Financial Group Japan 643 1.567 smtm.jp 8316.to
Resona Holdings Japan 122 434 rsnh.jp 8308.to
Nomura Holdings Japan 256 422 nmrh.jp 8604.to
Sumitomo Mitsui Trust Holdings Japan 184 406 smtm.jp 8309.to
Fukuoka Financial Group Japan 33 137 ffg.jp 8354.to
Bank Of Yokohama Japan 63 134 boy.jp 8332.to
Chiba Bank Japan 52 117 cbb.jp 8331.to
Hokuhoku Financial Group Japan 25 108 hkf.jp 8377.to
Shizuoka Bank Japan 61 104 shzb.jp 8355.to
Yamaguchi Financial Group Japan 23 93 yfg.jp 8418.to
Toronto-Dominion Bank Canada 827 827 td.ca td.t
Royal Bank of Canada Canada 935 825 ry.ca ry.t
Bank of Nova Scotia Canada 698 713 bns.ca bns.t
Bank of Montreal Canada 419 515 bmo.ca bmo.t
Canadian Bank of Commerce Canada 324 382 cm.ca cm.t
National Bank of Canada Canada 131 180 na.ca na.t
Unicredit Italy 477 1.166 ucg.it ucg.mi
Intesa Sanpaolo Italy 458 864 isp.it isp.mi
Banca Monte dei Paschi di Siena Italy 29 275 bmps.it bmps.mi
Banco Popolare Italy 36 174 bp.it bp.mi
Unipol Gruppo Finanziario Italy 28 116 uni.it uni.mi
Mediobanca Banca di Credito Finanziario Italy 85 95 mb.it mb.mi
National Australia Bank Australia 724 755 nab.au nab.au
Commonwealth Bank of Australia Australia 1100 688 cba.au cba.au
Australia and New Zealand Banking Group Australia 776 656 anz.au anz.au
Westpac Banking Australia 918 650 wbc.au wbc.au
Macquarie Group Australia 160 143 mqg.au mqg.au
China Merchants Bank China 358 664 cmb.cn 600036.sh
Shanghai Pudong Development Bank China 295 608 shgp.cn 600000.sh
China Minsheng Banking Corp China 297 533 cmb.cn 600016.sh
Ping An Bank China 190 313 pab.cn 000001.sz
Hua Xia Bank China 124 276 hxb.cn 600015.sh
HSBC Holdings UK 2010 2.671 hsba.gb hsba.ln
Barclays UK 682 2.174 barc.gb barc.ln
Royal Bank of Scotland Group UK 356 1.703 rbs.gb rbs.ln
Lloyds Banking Group UK 961 1.403 lloy.gb lloy.ln
Standard Chartered UK 524 674 stan.gb stan.ln
Banco Santander Spain 1030 1.538 san.es san.mc
Banco Bilbao Vizcaya Argentaria Spain 708 803 bbva.es bbva.mc

Continued on next page
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Table 2 – Continued from previous page
Bank Country Mcap Asset Bank Reuters
Name Code Ticker
Banco de Sabadell Spain 131 225 sab.es sab.mc
Banco Popular Espanol Spain 13 204 pop.es pop.mc
Nordea Bank Sweden 556 870 nor.se ndasek.sk
Svenska Handelsbanken Sweden 309 388 shba.se shba.sk
Skandinaviska Enskilda Banken Sweden 291 387 seba.se seba.sk
Swedbank Sweden 308 284 swe.se sweda.sk
BNP Paribas France 1000 2.482 bnp.fr bnp.fr
Credit Agricole France 367 2.119 aca.fr aca.fr
Societe Generale France 516 1.703 gle.fr gle.fr
Woori Finance Holdings Korea 84 309 wrfh.kr 053000.se
Shinhan Financial Group Korea 188 295 shf.kr 055550.se
Industrial Bank of Korea Korea 66 193 ibk.kr 024110.se
UBS Switzerland 802 1.138 ubsn.ch ubsn.vx
Credit Suisse Group Switzerland 503 983 csgn.ch csgn.vx
KBC Groupe Belgium 260 333 kbc.be kbc.bt
Dexia Belgium 1 307 dexb.be dexb.bt
Itau Unibanco Holding Brazil 332 435 itub4.br itub4.br
Banco Bradesco Brazil 235 355 bbdc4.br bbdc4.br
Deutsche Bank Germany 498 2.224 dbk.de dbk.xe
Commerzbank Germany 206 759 cbk.de cbk.xe
Bank of Ireland Ireland 146 182 bir.ie bir.db
Allied Irish Banks Ireland 999 162 aib.ie aib.db
State Bank of India India 165 400 sbin.in sbin.in
Bank of Baroda India 37 113 bob.in bankbaroda.in
Malayan Banking Berhad Malaysia 263 171 may.my maybank.ku
CIMB Group Holdings Malaysia 163 113 cimb.my cimb.ku
Banco Comercial Portugues Portugal 51 113 bcp.pr bcp.lb
Banco Espirito Santo Portugal 71 111 bes.pr bes.lb
DBS Group Holdings Singapore 320 318 d05.sg d05.sg
United Overseas Bank Singapore 251 225 uob.sg u11.sg
Erste Group Bank Austria 168 276 ebs.at ebs.vi
Danske Bank Denmark 256 597 dan.dk danske.ko
Pohjola Bank Finland 58 132 poh.fi poh1s.he
National Bank of Greece Greece 121 153 ete.gr ete.at
ING Groep Netherlands 557 1.490 inga.nl inga.ae
DNB ASA Norway 289 396 dnb.no dnb.os
Sberbank Rossii Russia 594 552 sber.ru sber.mz
Turkiye Is Bankasi Turkey 89 112 isctr.tr isctr.is
Standard Bank Group South Africa 177 161 sbk.za sbk.jo
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